Download presentation
Presentation is loading. Please wait.
1
For each point (x,y,z) in R3, the cylindrical coordinates (r,,z) are defined by the polar coordinates r and (for x and y) together with z. Example Find the cylindrical coordinates for each of the following: (x , y , z) = (6 , 63 , 8) (x , y , z) = (6 , –63 , 0) (x , y , z) = (–6 3 , –6 , –23) . (r , , z) = (12 , /3 , 8) (r , , z) = (12 , 5/3 , 0) (r , , z) = (12 , 7/6 , –23)
2
Example Find the rectangular (Cartesian) coordinates for each of
the following: (r , , z) = (20 , /2 , 4) (r , , z) = (20 , /4 , 4) (r , , z) = (15 , 2/3 , –16) (r , , z) = (6 , 4/3 , 0) (r , , z) = (0 , , –3) (x , y , z) = (0 , 20 , 4) (x , y , z) = (102 , 102 , 4) (x , y , z) = (–7.5 , 7.53 , –16) (x , y , z) = (–3 , –33 , 0) (x , y , z) = (0 , 0 , –3)
3
We can generalize the change of variables to integrals involving 3 (or any number of ) variables. If T(u,v,w) = (x(u,v,w), y(u,v,w), z(u,v,w)) is a transformation mapping the region W in R3 described by rectangular uvw coordinates to the region W* in R3 described by rectangular xyz coordinates, then f(x,y,z) dx dy dz = W* (x,y,z) f(x(u,v,w),y(u,v,w),z(u,v,w)) ——— du dv dw (u,v,w) W x x x — — — u v w (x,y,z) y y y ——— = det — — — (u,v,w) u v w z z z where, of course,
4
Using what we already know about polar coordinates, we have
f(x,y,z) dx dy dz = f(r cos , r sin , z) r dr d dz W* W where W* and W are the same region described respectively in terms of x, y, and z and in terms of r, , and z. (See also page 399 of the text.) Example Integrate the function f(x,y,z) = xyz over the region W where x, y, and z are all positive and between the cone z2 = x2 + y2 and the sphere x2 + y2 + z2 = 100. z y The region W can be described by < , r , z /2 50 r 100 – r2 x /2 50 (100 – r2)1/2 xyz dx dy dz = (r cos )(r sin )zr dz dr d = W r
5
/2 50 (100 – r2)1/2 r3 z cos sin dz dr d = /2 50 (100 – r2)1/2 r r3 z2 cos sin —————— dr d = 2 /2 50 z = r 100r3 – 2r5 ————— cos sin dr d = 2 /2 50 /2 75r4 – r6 ———— cos sin d = 6 31250 ——— cos sin d = 3 15625 ——— 3 r = 0
6
Example Find the volume inside the sphere of radius a defined by
x2 + y2 + z2 = a2 . Let W be the region inside the sphere which can be described as < , r , z 2 a – a2 – r2 a2 – r2 2 a (a2 – r2)1/2 2 a (a2 – r2)1/2 dx dy dz = r dz dr d = rz dr d = W z = –(a2 – r2)1/2 –(a2 – r2)1/2 2 a 2 a 2 – 2(a2 – r2)3/2 ————— d = 3 2a3 — d = 3 2r(a2 – r2)1/2 dr d = r = 0 4a3 —— 3
7
For each point (x,y,z) in R3, the spherical coordinates (,,) are defined by
x = sin cos , y = sin sin , z = cos , where = x2 + y2 + z2 is the length of the vector (x,y,z) , = the angle that the vector (x,y,z) makes with the positive z axis, = the angle that the vector (x,y,0) makes with the positive x axis . We have that 0 , 0 , and 0 < 2 . Also, note that sin = r = x2 + y2 .
8
Example Find the spherical coordinates for each of the following:
(x , y , z) = (3 , –1 , 0) (x , y , z) = (3 , –1 , 2) (x , y , z) = (–3 , –1 , –2) (x , y , z) = (0 , 0 , 10) (x , y , z) = (0 , 0 , –10) (x , y , z) = (0 , 0 , 0). ( , , ) = (2 , 11/6 , /2) ( , , ) = (22 , 11/6 , /4) ( , , ) = (22 , 7/6 , 3/4) ( , , ) = (10 , , 0) ( , , ) = (10 , , ) ( , , ) = (0 , , )
9
Example Find the rectangular (Cartesian) coordinates for each of
the following: ( , , ) = (4 , /4 , /4) ( , , ) = (4 , 3/4 , 3/4) ( , , ) = (5 , , ) ( , , ) = (2 , , 0) . (x , y , z) = (2 , 2 , 22) (x , y , z) = (–2 , 2 , –22) (x , y , z) = (0 , 0 , –5) (x , y , z) = (0 , 0 , 2)
10
Example Express each of the following surfaces in R3 in cylindrical coordinates and in spherical coordinates: xyz = 1 x2 + y2 – z2 = 1 r2z sin cos = 1 3 sin2 cos sin cos = 1 r2 – z2 = 1 2 – 22cos2 = 1
11
Example Express each of the following surfaces in R3 in rectangular (Cartesian) coordinates, and describe the surface: r = 9 = 1 sin = 0.5 cos = 0.6 x2 + y2 = 81 This is a circular cylinder. x2 + y2 + z2 = 1 This is a sphere of radius 1 centered at the origin. 3x2 + 3y2 – z2 = 0 for z 0 This is the “top” half of a cone. y = 4x/3 or y = – 4x/3 for x 0 These are two half-planes.
12
If W* and W are the same region described respectively in terms of x, y, and z and in terms of , , and , then f(x,y,z) dx dy dz = W* (x,y,z) ——— (,,) f( sin cos , sin sin , cos ) d d d = W We need the Jacobian determinant. f( sin cos , sin sin , cos ) d d d . W x = sin cos y = sin sin z = cos (x,y,z) ——— = (,,)
13
x x x — — — y y y det — — — = z z z x = sin cos y = sin sin z = cos (x,y,z) ——— = (,,) sin cos – sin sin cos cos det sin sin sin cos cos sin = cos – sin | – 2 sin | = 2 sin
14
If W* and W are the same region described respectively in terms of x, y, and z and in terms of , , and , then f(x,y,z) dx dy dz = W* (x,y,z) ——— (,,) f( sin cos , sin sin , cos ) d d d = W f( sin cos , sin sin , cos ) 2 sin d d d . W
15
Example Find the volume inside the sphere of radius a defined by
x2 + y2 + z2 = a2 . Let W be the region inside the sphere which can be described as , < , a 2 2 a dx dy dz = 2 sin d d d = W a 2 2 3 sin ——— d d = 3 a3 sin ——— d d = 3 2 a3 sin ————— d 3 = 0 4a3 —— 3 =
16
Example Integrate the function f(x,y,z) = xyz over the region between the cone z2 = x2 + y2 and the sphere x2 + y2 + z2 = 36 where x, y, and z are all positive and x < y. Let W be the region of integration which can be described as , , 6 /4 /2 /4 xyz dx dy dz = W /4 /2 6 (sincos)(sinsin)(cos) 2sin d d d = /4
17
/4 /2 6 5 sin3 cos sin cos d d d = /4 /4 /2 7776 sin3 cos sin cos d d = /4 /4 /4 /2 1944 sin3 cos d = 3888 sin3 cos sin2 d = = /4 /4 486 sin4 = 121.5 = 0
18
Example Find the volume of the “ice cream cone” above the xy plane described by the cone 3z2 = x2 + y2 and the sphere x2 + y2 + z2 = 25. Let W be the region of integration which can be described as , < , 5 2 /3 dx dy dz = W /3 2 5 /3 2 5 2 sin d d d = 3 sin ——— d d = 3 = 0
19
/3 2 /3 125sin ——— d d = 3 250 sin ———— d = 3 /3 – 250 cos ————— = 3 – 125 250 ——— + —— = = 0 125 —— 3
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.