Presentation is loading. Please wait.

Presentation is loading. Please wait.

Vibrational (Infrared) Spectroscopy

Similar presentations


Presentation on theme: "Vibrational (Infrared) Spectroscopy"— Presentation transcript:

1 Vibrational (Infrared) Spectroscopy
vibrational modes ← C≣≣O → equilibrium bond distance re can be changed by applying energy potential well for modified (Morse) potential classical vibrator well for a diatomic molecule 1. quantized – only certain energy levels may exist E = hω(u + 1/2)  u: vibrational quantum number w: vibrational frequency k ω = ―― ―― 2p m m1 × m2 m = ――――― m1 + m2    2. too close – repulsion between nuclei and electrons too far apart – dissociation

2 ex. HCl u(HCl) = 2990 cm-1 DCl u(DCl) = 2145 cm-1 ex u(NO) bond order NO cm-1 3 NO 1880 cm-1 2.5 NO cm-1 2 NO cm number of vibrational modes a molecule consists of N atoms, there are 3N degrees of freedom translation rotation vibration nonlinear N – 6 linear N – 5 type of vibrational modes stretching mode u bending mode d IR active absorption Raman active absorption

3 frequencies for some commonly encountered groups, fragments,
and linkages in inorganic and organic molecules

4 ex. W(CO) Mn(CO)5Br compound u(CO) (cm-1) [Ti(CO)6] [V(CO)6] Cr(CO) [Mn(CO)6] stretching modes of CO and IR frequencies (a) terminal (b) doubly bridging (c) triply bridging    ex.

5 some ligands capable of forming linkage isomers
  IR spectrum for nujol   salt plates NaCl cm-1 KBr cm-1 CsI cm-1 721 1377 1462 2925 2855

6 symmetry of normal vibrations
ex. CO vibrational modes C3(u3a) = -1/2u3a + 1/2 u3b C3(u3b) = -3/2u3a - 1/2 u3b determine the symmetry type of normal modes   E c = 12

7 C3   c = 0   C2 c = -2 c (sh) = 4 c (S3) = ?? c (sv) = 2

8 G = A1’ + A2’ + 3E’ + 2A2” + E” 3 translatory modes: E’, A2” 3 rotational modes: A2’, E” genuine vibrational modes: Gg = A1’ +2E’ + A2” IR active: E’, A2” (3 bands) Raman active: A1’, E’ (3 bands) particular internal coordinates to normal modes C—O bonds E C C sh S sv G GCO = A1’ + E’ in-plane stretching GOCO = A1’ + E’ in-plane bending A2” out-of-plane bending ex. determine the number of IR active CO stretching bands for the following metal carbonyl compounds : M(CO)6 M(CO)5L cis-M(CO)4L2 trans-M(CO)4L2 fac-M(CO)3L3 mer-M(CO)3L3 M(CO)5 M(CO)4L M(CO)3L2 M(CO)4

9 (i) trans-M(CO)4L2 D4h E C4 C2 C2’ C2” i S4 sh sv sd
OC CO OC CO ==> A1g + B1g + Eu L IR-active: Eu (ii) cis-M(CO)4L2 CO C2v E C s s’ OC L OC L ==> 2A1 + B1 + B2 CO IR-active: 2A1, B1, B2 (iii) mer-M(CO)3L3 CO C2v E C s s’ L L OC L ==> 2A1 + B1 OC IR-active: 2A1, B1 (iv) M(CO)5 D3h E C C2 sh S3 sv ==> 2A1’ + A2” + E’ IR-active: A2”, E’

10 (v) M(CO)4L L D3v E C3 sv 4 1 2 ==> 2A1 + E IR-active: 2A1, E
==> 2A1 + E IR-active: 2A1, E D2v E C sv sv‘ L ==> 2A1 + B1 + B2 IR-active: 2A1, B1, B2 (vi) M(CO)3L2 L D3h E C3 C2 sh S3 sv ==> A1‘ + E’ L IR-active: E’ L Cs E sh L ==> 2A‘ + A” IR-active: 2A’, A” (vii) M(CO)4 Td E C3 C2 S3 sd ==> A1 + T2 IR-active: T2

11 number of CO stretching bands in IR spetcrum for metal carbonyl compounds

12 number of IR bands of some common geometric arrangements

13 calculation of force constants
for diatomic molecule AB harmonic oscillator f • m-1 – l = 0 for polyatomic molecule Wilson’s method “The F and G matrix method” |FG – El| = 0 F: matrix of force constant (potential energy) G: matrix of masses and spatial relationship of atoms (kinetic energy) E: unit matrix  e.g. H2O Gg = 2A1 + B1 2 O-H distance Dd1, Dd A1 + B1 ∠HOH Dθ A1 using projection operator to obtain complete set of symmetry coordinates for vibrations A1 : S1 = Dθ S2 = 1/√2(Dd1 + Dd2) B1 : S3 = 1/√2(Dd1 - Dd2) F matrix 2V = Sfik si sk si, sk: change in internal coordinates for Dd1 Dd2 Dθ Dd1 fd fdd fdθ Dd2 fdd fd fdθ Dθ fdθ fdθ fθ

14 2V = fd(Dd1)2 + fd(Dd2)2 + fθ(Dθ)2 + 2 fdd(Dd1 Dd2)
+ 2 fdθ(Dd1 Dθ) + 2 fdθ(Dd2 Dθ) = [Dd1 Dd2 Dθ] fd fdd fdθ Dd1 fdd fd fdθ Dd2 fdθ fdθ fθ Dθ = s’f s relationship between the internal coordinates and the symmetry coordinates S = U s U matrix Dq Dd1 Dd1 + Dd2 = 1/√ /√ Dd2 Dd1 - Dd /√ /√ Dq S = U s s = U’ S s’ = (U’ S)’ = S’U s’fs = S’FS (S’U)f(U’S) = S’FS S’(UfU’)S = S’FS ==> F = UfU’ fd fdd fdθ /√2 1/√2 F = 1/√2 1/√ fdd fd fdθ /√2 -1/√2 1/√ /√ fdθ fdθ fθ fθ √2 fdθ = √2 fdθ fd + fdd fd - fdd

15 G = 1/√2 1/√2 0 gdd gd gdθ 0 1/√2 -1/√2 G matrix G = UgU’
gd gdd gdθ /√2 1/√2 G = 1/√2 1/√ gdd gd gdθ /√2 -1/√2 1/√ /√ gdθ gdθ gθ g √2 g13 0 = √2 g g11 + g12 0 g11 - g12 g11 = mH + mO g12 = mO cosθ g13 = -(mO/r) sinθ g33 = 2(mH + mO - mO cosθ)/r2 m : reciprocal of the mass 2(mH + mO - mO cosθ)/r2 -(√2mO/r) sinθ G = (√2mO/r) sinθ mH + mO (1+ cosθ) mH + mO (1 - cosθ) for H2O θ= 104.3o31’ r = Å G = fθ √2 fdθ l A1: – = 0 √2 fdθ fd + fdd l B1: (fd - fdd) = l

16 elements of the g matrix
mi: reciprocal mass of the ith atom rij: reciprocal of the distance between ith and jth

17 Raman spectroscopy light of energy less than that required to promote a molecule into an excited electronic state is absorbed by a molecule, a virtual excited state is created virtual state is very short lifetime, the majority of the light is re-emitted over 360oC, this is called Rayleigh scattering C. V. Raman found that the energy of a small proportion of re-emitted light differs from the incident radiation by energy gaps that correspond to some of the vibrational modes Stokes lines anti-Stokes line

18 schematic representation of Raman spectrometer
selection rules for vibrational transitions • a fundamental will be infrared active if the normal mode which is excited belongs to the same representation as any one or several of the Cartesian coordinates • a fundamental will be Raman active if the normal mode involved belongs to the same representation as one or more of the components of the polarizability tensor of the molecule the exclusion rule – in centrosymmetric molecules, no Raman-active vibration is also IR-active and no IR-active vibration is also Raman-active only fundamentals of modes belonging to g representations can be Raman active and only fundamentals of modes belonging to u representations can be IR active

19 ex. Na2MoO4 dissolved in HCl exhibits Raman
peaks at 964, 925, 392, 311, 246, 219 cm-1 925, 311 cm-1 being polarized what can be deduced from the spectrum? no n(Mo—H) and n(O—H) bands only M—Cl and M=O likely exist 964, 925 cm Mo=O stretching bands 392 cm Mo=O bending mode 311, 246, 219 cm-1 Mo—Cl stretching modes possible product:

20 normal vibrational modes for common structures

21

22

23

24

25

26


Download ppt "Vibrational (Infrared) Spectroscopy"

Similar presentations


Ads by Google