Download presentation
Presentation is loading. Please wait.
1
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20021 Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues David Martin, Charless Fowlkes, Jitendra Malik {dmartin,fowlkes,malik}@eecs.berkeley.edu UC Berkeley Vision Group http://www.cs.berkeley.edu/projects/vision
2
UC Berkeley Vision GroupNIPS Vancouver 20022
3
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20023 Multiple Cues for Grouping Many cues for perceptual grouping: –Low-Level: brightness, color, texture, depth, motion –Mid-Level: continuity, closure, convexity, symmetry, … –High-Level: familiar objects and configurations This talk: Learn local cue combination rule from data
4
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20024 Non-BoundariesBoundaries IT BC
5
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20025 Goal and Outline Goal: Model the posterior probability of a boundary P b (x,y, ) at each pixel and orientation using local cues. Method: Supervised learning using dataset of 12,000 segmentations of 1,000 images by 30 subjects. Outline of Talk: 1.3 cues: brightness, color, texture 2.Cue calibration 3.Cue combination 4.Compare with other approaches –Canny 1986, Konishi/Yuille/Coughlan/Zhu 1999 5.P b images
6
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20026 Brightness and Color Features 1976 CIE L*a*b* colorspace Brightness Gradient BG(x,y,r, ) – 2 difference in L* distribution Color Gradient CG(x,y,r, ) – 2 difference in a* and b* distributions r (x,y)
7
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20027 Texture Feature Texture Gradient TG(x,y,r, ) – 2 difference of texton histograms –Textons are vector-quantized filter outputs Texton Map
8
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20028 Cue Calibration All free parameters optimized on training data Brightness Gradient –Scale, bin/kernel sizes for KDE Color Gradient –Scale, bin/kernel sizes for KDE, joint vs. marginals Texture Gradient –Filter bank: scale, multiscale? –Histogram comparison: L 1, L 2, L , 2, EMD –Number of textons –Image-specific vs. universal textons Localization parameters for each cue (see paper)
9
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 20029 Classifiers for Cue Combination Classification Trees –Top-down splits to maximize entropy, error bounded Density Estimation –Adaptive bins using k-means Logistic Regression, 3 variants –Linear and quadratic terms –Confidence-rated generalization of AdaBoost (Schapire&Singer) Hierarchical Mixtures of Experts (Jordan&Jacobs) –Up to 8 experts, initialized top-down, fit with EM Support Vector Machines ( libsvm, Chang&Lin) Range over bias/variance, parametric/non-parametric, simple/complex
10
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200210 Classifier Comparison
11
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200211 Cue Combinations
12
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200212 Alternate Approaches Canny Detector –Canny 1986 –MATLAB implementation –With and without hysteresis Second Moment Matrix –Nitzberg/Mumford/Shiota 1993 –cf. Förstner and Harris corner detectors –Used by Konishi et al. 1999 in learning framework –Logistic model trained on eigenspectrum
13
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200213 Two Decades of Boundary Detection
14
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200214 P b Images I Canny2MMUsHumanImage
15
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200215 P b Images II Canny2MMUsHumanImage
16
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200216 P b Images III Canny2MMUsHumanImage
17
http://www.cs.berkeley.edu/projects/visionUC Berkeley Vision GroupNIPS Vancouver 200217 Summary and Conclusion 1.A simple linear model is sufficient for cue combination –All cues weighted approximately equally in logistic 2.Proper texture edge model is not optional for complex natural images –Texture suppression is not sufficient! 3.Significant improvement over state-of-the-art in boundary detection –P b useful for higher-level processing 4.Empirical approach critical for both cue calibration and cue combination Segmentation data and P b images on the web http://www.cs.berkeley.edu/projects/vision
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.