Presentation is loading. Please wait.

Presentation is loading. Please wait.

Clinical Neurochemistry “The Soup”

Similar presentations


Presentation on theme: "Clinical Neurochemistry “The Soup”"— Presentation transcript:

1 Clinical Neurochemistry “The Soup”

2 Talk: Diagnosis, Biology and Treatment of OCD
Speaker: Michael A. Jenike, M.D. Mtg: CME Vancouver 2001

3 A good working knowledge of clinical neurochemistry is essential for understanding and treating neurological and psychiatric disorders. It is important to learn the basics now so you can update your clinical management as new information becomes available.

4 What You Should Know Primary cell bodies, sites of action and metabolic pathways for dopamine, norepinepherine, serotonin, acetylcholine, GABA and glutamate Know the main mechanism of action and termination of action of the most common neurotransmitters Be aware of the most common receptor subtypes for each neurotransmitter Be familiar with examples of the mechanism of action of commonly used drugs for each neurotransmitter and the diseases they treat

5 Advances in Neurochemistry
Slow neurotransmitters include the monoamines and work through G proteins and second messengers Fast neurotransmitters include GABA and glutamate and bind directly on ion-gated channels Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

6 Clinical Neurochemistry
Monoamines Dopamine Norepinephrine Serotonin Others Acetylcholine GABA Glutamate Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

7 Catecholamines Dopamine Norepinephrine Epinephrine
Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

8 Dopamine (Main Cell Bodies)
Long tracts Substantia nigra  primarily to striatum Ventral tegmental area  striatum plus the mesolimbic and mesocortical systems Intermediate Hypothalamic—pituitary (DA inhibits prolactin) Short Olfactory Retina Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

9 Weigert stain of the midbrain SN=substantia nigra, VTA=
ventral tegmental area, DR= dorsal raphe VTA SN Dopamine cell bodies and tracts DR

10 Phenylalanine hydroxylase
Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

11 Rate-Limiting Step and Termination of Action of Dopamine
Action of tyrosine hydroxylase is the rate-limiting step The main termination of action for the monoamines is presynaptic reuptake Monoamine oxidase (MAOB), catechol- O-methyltransferase (COMT) Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

12 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

13 Monoaminergic Receptors
Formed by 7 membrane spanning regions with an intracellular carboxy tail and an intracellular amino region The structure of the receptors are highly conserved with small changes in amino acid sequence leading to changes in receptor affinity Monoaminergic receptors exert their effect through G-proteins and other 2nd, 3rd and 4th messengers that often cause protein phosphorylation and regulation of an ion channel

14 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

15 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

16 Dopamine Receptors D1 is the most common and thought to involve stimulation of adenylate cyclase and increased production of cyclic AMP D1 receptors are found in the striatum but also abundantly in cortical and limbic regions D2 receptors are located primarily in the striatum and inhibit adenylate cyclase The D3, D4 and D5 receptors occur primarily in cortical and limbic regions Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

17 Drugs that affect the dopaminergic system
Neuroleptics are classified as typical or typical based on their degree of blockade of the D2 receptor Haloperidol is a potent D2 blocker and typical antipsychotic. It is an effective antipsychotic but can cause Parkinsonism, tardive dyskinesia (TD) and cognitive slowing. Clozapine is an atypical antipsychotic with weak antagonism at D1 and D2 receptors and blocks 5HT2 serotonin receptors. It may exert its antipsychotic effect by blocking D4 receptors, thereby sparing the striatum. Clozapine does not normally cause extrapyramidal symptoms, TD, or increased prolactin.

18 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

19 Clinical Significance
Too much dopamine can cause euphoria, confusion and psychosis. Too little produces Parkinsonism Dopamine does not cross the blood-brain barrier. Replace dopamine in Parkinson’s disease with L-dopa. Cocaine blocks reuptake. Amantadine and amphetamine promote presynaptic release. MAO-B inhibitors such as deprenyl are specific for blocking dopamine breakdown at the usual doses of 5 mg/bid. Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

20 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

21 Olfactory and Entorhinal Cortices Lateral Tegmental NA Cell System
NE cell bodies are in the locus ceruleus at the upper dorsal pons. Thalamus Cingulate Gyrus Amygdaloid Body Olfactory and Entorhinal Cortices Hippocampus Locus Ceruleus Lateral Tegmental NA Cell System To Spinal Cord Cerebellar Cortex Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

22 Noradrenergic Cell Bodies in the Dorsal Pons
LC AS LC Weigert myelin stain of pons. LC=locus ceruleus, AS=aqueduct of Sylvius

23 Metabolism—Termination
Reuptake—main route of termination COMT  Normetanephrine + MAO  VMA (3 methoxy 4 hydroxy-mandelic acid) MAO  MHPG (3 methoxy-4 hydroxy- phenylglycol) Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

24 Alpha and beta receptors in a noradrenergic synapse
Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

25 Noradrenergic Receptors
Phenoxybenzamine and phentolamine are A1 blockers and are used in the treatment of hypertension Clonidine is an alpha2 presynaptic autoreceptor agonist and causes a decrease in sympathetic tone. It is useful in the treatment of hypertension and opiate withdrawal Yohimbine is primarily an alpha2 presynaptic antagonist and causes an increase in sympathetic tone which may lead to increased arousal, panic anxiety and sexual potency. The beta receptors are thought to activate cyclic AMP Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

26 Clinical Significance
The amygdala is richly innervated by nonadrenergic neurons in the locus ceruleus. Norepinephrine plays an important role in panic disorder, maintenance of attention and transmission of pleasurable stimuli via the brainstem reticular activating system and medial forebrain bundle. NE enhances emotional memories and beta blockers can inhibit the formation of emotional memories There is a dropout of noradrenergic neurons in the locus ceruleus in patients with Parkinson’s disease which may contribute to the high incidence of depression and anxiety in PD Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

27 Serotonin Cell bodies Main cell bodies are in the dorsal raphe nuclei surrounding the cerebral aqueduct in the midbrain. They project diffusely to the striatum, limbic system, cortex and cerebellum. Caudal raphe nuclei in the pons and medulla project to the spinal cord and probably play a role in the mediation of pain in the dorsal horn of the cord Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

28 Cingulate gyrus To hippocampus Cerebellar cortex Caudal raphe nuclei
Thalamus Ventral striatum Amygdaloid body Hypothalamus Olfactory and entorhinal cortices Hippocampus Rostral raphe nuclei Striatum Neocortex Cingulum To hippocampus Cerebellar cortex Caudal raphe nuclei To spinal cord Cingulate gyrus Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

29 Synthesis Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review Availability of tryptophan is the rate limiting step in serotonin synthesis

30 Clinical significance
Metabolism Reuptake—primary method of inactivation MAO 5-HIAA Clinical significance Serotonin has effects on: Sleep induction Mood Pain/headache Nausea Anxiety Extrapyramidal system Pleasure Vasomotor tone Psychosis Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

31 Fenfluramine increases release MAO inhibitors decrease degradation
Methysergide is an antagonist Buspirone is an agonist 6 LSD is an agonist 7 5 4 3 2 1 Fenfluramine increases release Reserpine depletes vesicular stores Fluoxetine (Prozac) and tricyclics block reuptake MAO inhibitors decrease degradation Tryptophan 5-OH-tryptophan 5-HT 5-HIAA MAO Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

32 Clinical Significance
Availability of tryptophan is the rate-limiting step, Activity of Tryptophan hydroxylase is also important Reserpine depletes vesicular stores and may exacerbate depression Fenfluramine promotes presynaptic release MAOI pre- and postsynaptically slows metabolism Tricyclic antidepressants such as amitriptyline, and fluoxetine inhibit reuptake Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

33 Serotonergic Receptors
A very active area of research. 5-HT1-7 receptors have been described; subtypes of each group have been identified 5-HT1 works primarily  or  adenylate cyclase, Imitrex, used to treat acute migraine, is a 1D agonist 5-HT receptors affect phosphatidylinositol systems methysergide, LSD Ondansetron a 5-HT3 antagonist is a potent antiemetic Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

34 Serotonin Syndrome MS—confusion, agitation, restlessness
Motor—myoclonus, rigidity, hyperreflexia Autonomic-shivering, flushing, fever, diaphoresis GI—nausea, diarrhea Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

35 Acetylcholine Primary cell bodies Termination of action by both:
Found in the patchy forebrain nuclei of the nucleus basalis of Mynert and septal nuclei Rich connections to the hippocampus and amygdala Ach is the main neurotransmitter at the neuromuscular jct and in the autonomic nervous system Termination of action by both: Enzymatic cholinesterase- choline plus acetate By reuptake of choline Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

36 NBM NBM=nucleus basalis of Meynert
Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review Put midbrain slide here NBM

37 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

38 Acetylcholine Involved in: Memory and attention Induction of REM sleep
Regulation of behavior Motor function Autonomic nervous system Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

39 Clinical Significance
Choline acetyltransferase (CAT) is the enzyme involved in the synthesis of Ach, CAT decreases in AD Botulinum toxin inhibits release of acetylcholine and is useful for the treatment of focal dystonia. Lambert-Eaton syndrome, a paraneoplastic disorder, leads to decreased release of Ach Acetylcholinesterase inhibitors such as Aricept, Exelon and Reminyl are approved for the Rx of mild-mod AD. Reminyl also modulates presynaptic nicotinic receptors. Exelon also inhibits butyrylcholinesterase Mestinon, a peripheral cholinesterase inhibitor, improves motor symptoms in myasthenia gravis Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

40 Cholinergic Receptors
Nicotinic at NMJ and ANS. Antibodies formed against nicotinic cholinergic receptors at the neuromuscular junction cause myasthenia gravis M1-5 muscarinic receptors in the brain. Nicotinic receptors also in brain. M2 and 4 decrease cAMP and M1,3,5 work via PI Atropine and scopolamine block muscarinic receptors. Atropine increases heart rate, slows GI motility and dilates the pupils. Scopolamine can cause memory disturbance. Urecholine, an autonomic agonist, promotes bladder emptying. Ditropan, an autonomic antagonist, promotes retention of urine Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

41 GABA Distribution Synthesis
The major inhibitory neurotransmitter in the brain Ubiquitously distributed High concentrations in the striatum, hypothalamus, spinal cord, colliculi and medial temporal lobe Synthesis Glutamate (amino acid precursor)  Glutamic acid decarboxylase (GAD) GABA Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

42 GABA Receptors GABA A-chloride channel GABA B-Baclofen
GABA binding opens the chloride channel Benzodiazepines enhance GABA affinity and activity Bicuculline is a receptor antagonist and induces seizures Barbiturates and alcohol help open the chloride channel at another site in the receptor Picrotoxin inhibits the chloride channel and produces seizures GABA is found to be decreased in the striatum in Huntington’s disease GABA B-Baclofen Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

43 Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

44 GABA Neuron Talk: Clinical Neurochemistry and Neuroimaging
Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review Put GABA neuron slide here

45 GABA Function Benzodiazepines are used to treat anxiety, seizures, and muscle spasms GABA transaminase inhibitor vigabatrin used in Europe for epilepsy The anticonvulsant tiagabine (Gabatril) blocks reuptake of GABA Topiramate (Topamax), divalproex (Depakote), gabapentin (Neurontin) and other AC’s modulate GABA Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

46 Glutamate The most common excitatory neurotransmitter in the CNS.
Amino acid involved in excitotoxic injury, seizures, learning, memory, anxiety, depression, psychosis Blockade of glutamate receptors may have a protective role for tissue at risk in acute stroke and for TBI. MK801 and PCP are NMDA antagonists and both cause psychotic symptoms Riduzole and lamotrigine medication for ALS and epilepsy decrease glutamatergic transmission. Memanatine an NMDA antagonist is being tried for advanced AD Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

47 Talk: Diagnosis, Biology and Treatment of OCD
Speaker: Michael A. Jenike, M.D. Mtg: CME Vancouver 2001

48 Glutamate Receptor Function
Glutamate, at NMDA receptors, leads to opening of an ion channel and influx of Ca and Na The block of Mg is removed by activation of an AMPA receptor Glycine must also bind to its receptor to allow Ca and Na influx Some glutamate receptors are metabotropic and use 2nd messengers Glutamate reuptake is tightly regulated Talk: Clinical Neurochemistry and Neuroimaging Speaker: Stephen Salloway, M.D. Meeting: 2001 Board Review

49 Feeling stuck? Check out the Neurotransmitter Table on p. 73

50 Questions 1. Why does cocaine chorea? a. It is a dopamine agonist
b. It reduces GABA levels c. It enhances serotonin d. It increases endogenous dopamine 2. Which glutamate reactions are neurotoxic? a. Glutamate-ACh c. Glutamate-NMDA b. Glutamate-dopamine d. Glutamate-serotonin 3. Stimulation of which dopamine receptor(s) increases adenyl cyclase activity? a. D1 receptors c. Both D1 and D2 b. D2 receptors d. Neither

51 Questions 4. The primary cell bodies for dopamine are located in the nucleus accumbens? a. True b. False Matching Type: 5. Dopamine a. Locus ceruleus 6. Serotonin b. Nucleus basalis of Meynert 7. Acetylcholine c. Substantia nigra 8. Norepinepherine d. Dorsal raphe 9. Dopamine a. Pons 10. Serotonin b. Midbrain 11. Acetylcholine c. Basal forebrain 12. Norepinepherine d. Cerebellum

52 Questions 13. What is the rate-limiting step in norepinepherine synthesis? a. Phenylalanine to tyrosine d. Tyrosine to dopa b. Tyrosine to tyrosine e. Dopa to norepinephine hydroxylase 14. Clozapine does not increase prolactin. a. True b. False 15. The activity of the monoamines is primarily terminated by: a. breakdown by MAO d. phosphorylation b. reuptake into the e. Ion channel inactivation presynaptic neuron c. Conversion to choline and acetate

53 Answers 1. D 2. C 3. A 4. B 5. C 6. D 7. B 8. A 9. B 10. B 11. C 12. A 13. D 14. A 15. B

54 People and Pills and the Art of Medicine

55 Surgical Treatment- Cavernous Hemangioma

56 9/29/2003

57 9/29/2003


Download ppt "Clinical Neurochemistry “The Soup”"

Similar presentations


Ads by Google