Presentation is loading. Please wait.

Presentation is loading. Please wait.

Boosting the sensitivity of nuclear magnetic resonance

Similar presentations


Presentation on theme: "Boosting the sensitivity of nuclear magnetic resonance"— Presentation transcript:

1 Boosting the sensitivity of nuclear magnetic resonance
Hyperpolarized MRI Boosting the sensitivity of nuclear magnetic resonance Yves De Deene

2 In this presentation ... MRI: Basic principles
Molecular imaging with MRI Hyperpolarized gas MRI The future of hyperpolarized Xe129 2/33

3 The use of MRI: basic principle
I.I. Rabi 1938 E. Purcell 1946 F. Bloch The use of MRI: basic principle The advantage of magnetic resonance imaging (MRI) is the absence of any ionizing irradiation to acquire an image. To make an MRI image use is made of a static magnetic field, radiofrequency waves (electromagnetic waves similar to the ones received by a transistor radio) and switched magnetic fields (gradients). No adverse health effects are found with the use of MRI scanners. Unlike any other medical imaging modality, it are the (nuclei of atoms within) molecules themselves that are the signal carriers. The molecular interactions of water molecules with macromolecular structures (proteins, cell membranes, etc.) are responsible for the image contrast. Superconducting coil (magnet) Radiofrequency coil Gradient coil The superior soft tissue contrast originates from the large amount of water molecules that ‘probe’ the cellular microstructure. The water molecules interact with cellular components through diffusion, collision, adhesion, absorption, collision, chemical exchange and magnetization transfer. All these interactions cause changes in the behavior of the received MR signal. 3/33

4 The use of MRI: basic principle
Conventional magnetic resonance imaging (MRI) is based on the radiofrequency signal that is transmitted from the atomic nucleus of hydrogen atoms placed in a magnetic field and after they have been excited by a radiofrequent electromagnetic pulse. Hydrogen proton has a magnetic moment external magnetic field Cryogenic magnet Radiofrequency coil Gradient coil Water molecule Hydrogen proton transmits a radiofrequent electromagnetic wave (yellow) after excitation by an RF pulse (red) The electromagnetic signal transmitted by the hydrogen protons is received by the scanner and processed... Cross-section of an NMR scanner 4/33

5 The contrast in NMR is based on
Pound Purcell Bloembergen The contrast in NMR is based on the molecular physics of water molecules (e.g. spin-spin relaxation) FREE WATER Hydrogen bridges M t High mobility INTERMEDIATE LAYER BOUND LAYER + - C O N - + Protein, polymer, cell membrane Low mobility 5/33

6 MOLECULAR IMAGING WITH MRI
Low sensitivity of conventional 1H MRI The sensitivity of conventional MRI is governed by Boltzman statistics. In a magnetic field of 3T, only an excess of one of 100,000 atoms is magnetized in the direction of the applied magnetic field. B0 -1/2 +1/2 Boltzmann statistics ( at 3T ) Bij het ondersheiden van exogene contraststoffen in magnetische resonantie beeldvorming is het belangrijk om een goed begrip te hebben van de fysische beperkingen. Omwille van de eenvoud in deze uiteenzetting werd bij de eerste dias verteld dat de staafmagneetjes gericht werden volgens het extern magnetisch veld. Dit kan verkeerdelijk de indruk gewekt hebben dat de magnetische dipoolmomenten van de atoomkernen gericht werden. In werkelijkheid zijn er in een extern magnetisch veld zoals dat van onze MR-scanner (3T) slechts één op atoomkernen die deelnemen aan dit proces. Gezien de grote hoeveelheid aan watersofkernen in menselijk weefsel is dit voldoende om aanleiding te geven tot een meetbaar signaal. In het licht van contraststoffen die in kleinere hoeveelheden geïnjecteerd worden is het echter wel belangrijk om deze fysische beperking in gedachten te houden. 6/33

7 MOLECULAR IMAGING WITH MRI
Exogeneous contrast agents MR contrast agent Blood circulation (MRA) NON SPECIFIC CONTRAST AGENTS Perfusion SPECIFIC CONTRAST AGENTS Reporter Ligand Vector Receptor (Target) Cell receptor Gene sequence Enzyme 7/33

8 MOLECULAR IMAGING WITH MRI
Molecular specific probes ESSENTIAL PROPERTIES SENSITIVITY SPECIFICITY BIO DISTRIBUTION (Pharmacokinetics) BIO COMPATIBILITY In vivo moleculaire doelwitten: 1 nM – 1 pM Molecular Contrast - = Foreground Background 8/33

9 MOLECULAR IMAGING WITH MRI
The sensitivity problem: molecular specific probes Gd3+ HYDRATION SPHERE t Gd3+ Hier wordt dit dilemma van de sensitiviteit geschetst in het licht van een Gadolinium-houdende paramagnetische contraststof. In het meest gunstige geval wordt slechts één op de atoomkernen beïnvloed door de magnetische veldverstoring van een Gadolinium-atoom. 9/33

10 MOLECULAR IMAGING WITH MRI
Increasing sensitivity by increasing the number of reporter molecules Liposomes / Micelles Magnetic nanoparticles contrastagent FexOy vector Lecithine/cholesterol Perfluoro- octylbromide nanoparticle phospholipid Gd-DTPA lipid Gd-DTPA-PE phospholipide Biotinylated DPPE avidin (Ultra-)Small-Particle Iron-Oxide SPIO, USPIO Size: 30 nm nm r1 ≈ 25 s-1.mM-1 PEG 10/33 antibody Antibody

11 MOLECULAR IMAGING WITH MRI ‘Smart’ contrastagents
H2O Enzym-mediated contrast agent β-galactosidase T « Switch-on / switch-off » probes Liposome membrane Temperature sensitive contrastagent Ca2+ mediated contrastagent (also for Zn2+ en pH) CLIO Gen-sequence specific contrastagent 11/33

12 MOLECULAR IMAGING WITH MRI
In vivo experiments Artherosclerose Perfluoro- octylbromide nanoparticle Lecithine/cholesterol Gd-DTPA-PE anti αvβ3 - integrine 12/33

13 MOLECULAR IMAGING WITH MRI
Dilemma for molecular imaging with 1H paramagnetic contrastagents SENSITIVITY ENHANCEMENT WITH BIGGER CONTRAST AGENTS Loss of specificity Disturbance of the de pharmacokinetics In het geval van moleculair-specifieke paramagnetische contraststoffen botst men hierdoor al vlug op een beperking. Aangezien specifieke cel-receptoren (binding-sites) slechts in kleinere getale aanwezig zijn dient elke contrastmolecule honderden tot duizenden metaalatomen te bevatten om de kans te verhogen dat naburige watersofatoomkernen de interactie zouden waarnemen. Dit betekent echter dat deze contrastmoleculen heel groot worden waardoor hun interactie met de receptor in het gedrang komt en tevens minder permeabel worden om de bloedvaten te verlaten. Door de intrinsieke fysische beperkingen houdt de toename van de sensitiviteit (door meerdere metaalatomen in dezelfde contrastmolecule aan te brengen) een reductie van de specificiteit in (doordat de molecule ‘te’ groot wordt). 13/33

14 Increasing the sensitivity of MRI
MOLECULAR IMAGING Increasing the sensitivity of MRI Sensitivity 1 pM PET In vivo molecular targets 1 nM SPECT 1 μM MRI (‘pushing the limits’) MRI De verschillende beeldvormingstechnieken die op niet-invasieve wijze biologisch weefsel in beeld kunnen brengen ingedeeld volgens ruimtelijke resolutie (abscis) en hun sensitiviteit (ordinaal). In vivo moleculaire doelwitten (zoals celreceptoren en eiwitten) komen in menselijk weefsel in concentraties voor kleiner dan 10^-9 Molair (1 nM). Met behulp van X-stralen kunnen microscopisch kleine structuren worden waargenomen maar het moleculair contrast is eerder beperkt. Nucleaire beeldvormingstechnieken (SPECT en PET) zijn gekenmerkt door een hoge sensitiviteit maar zijn intrinsiek beperkt in resolutie door de diffusie van het radioactief agens. Fluoroptische technieken kunnen aangewend worden in proefdieren maar door de beperkte indringdiepte in het zichtbaar lichtspectrum komen deze methoden niet in aanmerking voor in vivo beeldvorming van humane subjecten. Met behulp van nucleaire magnetische resonantie beeldvorming (MRI) kan een aanzienlijke beeldresolutie bekomen worden maar leent zich op het eerste zicht niet tot moleculaire beeldvorming door de relatief lage sensitiviteit. Verder in deze presentatie zal verduidelijkt worden hoe de sensitiviteit van NMR beeldvorming toch kan worden opgedreven. MRS 1 mM X-ray 1 μm 10 μm 100 μm 1 mm 1 cm 1 dm 14/33 Spatial resolution

15 MOLECULAR IMAGING WITH MRI
HYPERPOLARIZATION: A possible alternative for boosting NMR sensitivity HYPERPOLARISATION OUTSIDE THE SCANNER INJECTION OF HYPERPOLARIZED AGENT SCANNING THE PATIENT Een uitweg uit deze impasse is het gebruik van een compleet ander mechanisme. In een aantal recente experimenten is men erin geslaagd om koolstof-13 atomen in een dergelijke toestand te brengen dat 50 % van de atoomkernen als staafmagneetjes zullen functioneren. Dit opent een immens potentiaal aan mogelijkheden voor moleculair-specifieke contraststoffen. In een speciaal toestel dat gebruik maakt van microgolven bij extreem lage temperaturen worden de koolstof-13 atomen buiten de scanner in een hypergepolariseerde toestand gebracht. 15/33

16 How to obtain HYPERPOLARIZATION ?
‘Brute Force’  cooling room temperature (P = 10-5) Dynamic Nuclear Polarization 94 GHz 13C Parahydrogen 13C B0 Optical pumping 16/33

17 Hyperpolarized gas NMR by optical pumping
Bouchiat M.A., Carver T.R. And Varnum C.M. “Nuclear Polarization in He3 Gas Induced by Optical Pumping and Dipolar Exchange” Physical Review Letters, 5, , 1960. Philips G.C., Perry R.R., Windham P.M., “Demonstration of a Polarized He3 Target for Nuclear Reactions” Physical Review Letters, 9, , 1962. Walters G.K., Colegrove F.D. and Schearer L.D. “Nuclear Polarization of He3 Gas by Metastability Exchange with Optically Pumped Metastable He3 Atoms”, Physical Review Letters, 9, , 1962. 17/33

18 Hyperpolarized gas NMR by optical pumping Principle
Hyperfine structure Rb Fine splitting 794.7 nm 18/33

19 Hyperpolarized gases: Spin exchange
Rb He3 Laser- beam OPTICAL PUMPING SPIN EXCHANGE H = a(r).I.S

20 Hyperpolarized gas NMR by optical pumping Principle: Electron energy states of Rubidium
Fine structure Hyperfine structure e- Fine interaction (spin – orbital momentum coupling) Zeeman splitting B e- n Hyperfine interaction (nucleus – angular momentum) Bohr model 20/33

21 Hyperpolarized gas NMR by optical pumping Principle: Optical pumping of Rubidium
photon (S = 1) e- e- electron = trapped 21/33

22 Hyperpolarized gas NMR by optical pumping Rubidium-Xenon Spin-Exchange
Hyperfine coupling (Rb electron – Xe nucleus) Hyperfine coupling (Rb) Spin rotation 22/33

23 Hyperpolarization generator
Polarisation optics Laser unit Coil for static magnetic field (~ 5 mT) Cooling circuit Glass cell (Xe-129, N2, He) Circulation bath (cooling liquid) NMR-acquisition Pre amplifier PA 100 W To Spectrometer or scanner Rb Oil bath (~ 140 °C) Xe-129 He Pinhole Circulation bath oil (~ 140 °C) N2 Optical spectrometer Laser power meter Vacuumpump Semi-transparant mirror 23/33

24 Hyperpolarized gases: Spin exchange
t [h] Polarization 0.2 0.4 0.6 0.8 2.5 h 5 h 10 h 33 h T1 15 h 0 h Rb density collision rate Example: From: Leawoods et al, Concepts in Magnetic Resonance, 13(5): , (2001).

25 Hyperpolarized gases: Sequences and Applications
In H1-imaging: T1 is needed for recovery of signal In Xe129-imaging: All imaging has to be performed within a time T1 Small flip angles should be used (FLASH, FISP) Static He3 density images (during breath-hold) Diffusion images (Optimized Interleaved-Spiral): Restricted diffusion by alveolar walls (emphysema) Xe129 transport into tissue (Compartimental analysis) He3 and Xe129 Spectroscopy Tagging for monitoring lung ventilation Dynamic studies with EPI sequences 25/33

26 HYPERPOLARISED GAS NMR: Some immediate applications
Dynamic MRI of the lung MR ventilation images of the lung asthma studies with He-3 Hyperpolarized Xe-129 imaging 3D rendered MRI of the lung 26/33 SOURCE: University of Virginia Health Systems

27 HYPERPOLARISED GAS NMR:
Lung imaging Diffusion imaging reveals lung microstructure Tagging reveals lung motion 20-year old non-smoker 62-year old smoker Inhalation Exhalation Displacement vectors Fain et al, J. Magn. Reson. Imaging. 25, , 2007 Cai et al, Int. J. Radiation Oncology Biol. Phys. 68, 650-3, 2007 27/33

28 HYPERPOLARISED GAS NMR: No need for high-field strength scanners ...
28/33

29 HYPERPOLARISED GAS Decay time T1-decay t Injection 29/33 60 s T1 3He
T1 relaxation decay is determined by T1-decay the Intra-molecular environment the solvent Magnetic spin polarization the temperature the degree of acidity (pH) 60 s t Injection T1 3He 129Xe pure gas months 21 days in Pyrex test tube 2 h – 30 h 20 min In vivo 30 s – 60 s 20 s – 40 s 29/33

30 Xe-129 as a smart molecular contrast agent
spectrum Molecular probe NMR spectrum Polair peptide Cryptophane-A cage biotin polar peptide Not bound bound SOURCE: Spence MM et al 2001, PNAS 98, 30/33

31 HYPERPOLARISED Xe-129 as a molecular marker The problem Xe T1
Loss of magnetization before tracer at site Science 314: 446-9, 2006 31/33

32 HYPERPOLARISED Xe-129 as a molecular marker 32/33
Hyperpolarized Xe-129 CHEMICAL EXCHANGE 200 ppm 100 ppm 100 ppm 50 ppm Chemical shift Schröder et al, Science 314: 446-9, 2006 32/33

33 Hyperpolarized gases: Objectives of the UGent research group
Construction of a hyperpolarizer for Xe129 MRI Implementation of clinical applications for pneumology / oncology Investigation of the possible use of hyperpolarized MRI for molecular imaging Hyperpolarization of other nuclei (SPINOE) 33/33

34 I visited Copenhagen frequently after the war
I visited Copenhagen frequently after the war. At one point, I gave a talk in Copenhagen, and then afterwards we met with Bjerrum. Bjerrum was a chemist and a great friend of Niels Bohr… Bohr said to him: “You know, what these people do is really very clever. They put little spies into the molecules and send radio signals to them, and they have to radio back what they are seeing.” I thought that was a very nice way of formulating it. That was exactly how they were used. It was not anymore the protons as such. But from the way they reacted, you wanted to know in what kind of environment they are, just like spies that you send out. That was a nice formulation. - Felix Bloch -


Download ppt "Boosting the sensitivity of nuclear magnetic resonance"

Similar presentations


Ads by Google