Presentation is loading. Please wait.

Presentation is loading. Please wait.

SuperNova/Acceleration Probe L U O SLAC User’s Organization Meeting “Redefining the User Facility” February 7, 2008 Gregory Tarlé University of Michigan.

Similar presentations


Presentation on theme: "SuperNova/Acceleration Probe L U O SLAC User’s Organization Meeting “Redefining the User Facility” February 7, 2008 Gregory Tarlé University of Michigan."— Presentation transcript:

1 SuperNova/Acceleration Probe L U O SLAC User’s Organization Meeting “Redefining the User Facility” February 7, 2008 Gregory Tarlé University of Michigan

2 A New Type of SLAC User Gregory Tarlé Professor of Physics, University of Michigan Research Focus: Particle Astrophysics/Cosmology Current Research: Dark Energy (SNAP and DES), Cosmic Rays (CREST) Past Research: MACRO, HEAT…

3 Supernova / Acceleration Probe A large wide-field space telescope with a 0.6 Gpixel visible/NIR imager and a visible/NIR spectrograph will provide: A much larger statistical sample of supernovae (2000 SNe with 50 SNe/0.03 z). Much better controlled systematic errors (1 – 2%). A much larger range of redshifts (out to z = 1.7) than can be obtained with any other existing or planned instrument. Use type Ia SNe as standard candles to measure expansion history of the Universe over 2/3 of the age of the Universe. Complementary Weak Lensing survey will measure the growth of structure probing the competition the competition between Matter and DE.

4 SNAP NIR Program NIR Project Lead: G. Tarlé Participating Institutions: Caltech, GSFC, IU, JPL, RIT, UM Procure 36 Science Grade Flight NIR detectors meeting SNAP science requirements. Procure FE electronics for above (SIDECAR) Characterize and calibrate flight NIR detectors Teledyne Imaging Sensors (TIS) has emerged as the leader for manufacture of large format SWIR HgCdTe Focal Plane Arrays.

5 The Michigan SNAP Group Wolfgang Lorenzon Precision Photometry Shawn McKee Simulation Software Tools Gregory Tarlé SNAP NIR Coordinator UM Task Leader Tim McKay Auxiliary Science Dave Gerdes Science Simulations Thomasz Biesiadzinski Detector and Cosmology Simulations Michael Schubnell UM Lab Coordinator Data Analysis Graduate Students Professional Staff Faculty Research Scientists Undergraduate Students Curtis Weaverdyck NIR Lab Eng. Bob Newmann Anastasia Karabina Thomas Zurbuchen Electronics Steven Rogacki SIDECAR

6 Resources at UM available to SNAP UM Physics shared facilities: –Electronics shop (1 engineer + students) –Mechanical shop (2 machinists) UM Space Physics Research Lab (SPRL) shared facilities. –Clean room –~dozen engineers, managers w/space flight expertise

7 Michigan NIR Laboratory Calibrated Flat-field Illuminator ESD safe environment Spot-o-Matic Quantum Efficiency setup Dewar #1 Readout electronics Dewar #2 Power supply and temp. controller Coordinated by Michael Schubnell Equipment developed mostly by students The Michigan NIR Detector Lab

8 Towards SNAP Science Grade Detectors SNAP NIR in excellent shape; performance of NIR detectors better or as good as required at beginning of R&D. Latest Teledyne detector lots promising Goal: produce ‘home run’ science grade device based on optimized recipe (high QE and very low noise) 12 layers grown successfully. Four looking very promising (PEC results) –Hybrids from lot 4 and lot 5 are being packaged (SNAP SiC flight package) –Expect new devices delivered in March 2008 Space version of FE electronics under development

9 Our SNAP Collaborators at SLAC Gunther Haller SNAP Electronics System Manager Roger Blandford Director of KIPAC Kevin Reil Staff Physicist SNAP star tracker Leonid Sapozhnikov Engineer SNAP DAQ hardware Sergio Maldonado Engineer SNAP DAQ software Dave Tarkington Engineer SNAP Elect./Mech. Aaron Roodman Group Leader Dave Nelson Engineer SNAP Elect./Mech.

10 SIDECAR Teledyne has developed a read-out ASIC (SIDECAR), specifically designed for use with the H2RG multiplexer (ROIC for 2k x 2k FPAs). This ASIC is designed to handle the clocking, biasing and read-out of all 32 channels of our HgCdTe FPAs. SIDECAR electronics under evaluation at UM and SLAC UM: Supported by SPRL @ UM (Prof. Thomas Zurbuchen and Steve Rogacki (engineer)). Established functionality and read-out of cold detector (w/ warm Teledyne SIDECAR Development Kit (SDK)) SLAC: Gunther Haller’s group, as part of the SNAP electronics effort developed EGSE and DAQ. Replaced Teledyne interface and (JADE card) and DAQ with documented open system with easily modifiable software. (1 unit to UM by Feb 2008) SLAC UM

11 SIDECAR Adapter Board (SLAC) cPCI crate Instrument Communication Board (SLAC) cPCI MCP750 processor SLAC EGSE Provided by SLAC

12 EGSE DAQ Provided by SLAC Linux host client connects to EGSE crate –Ethernet TCP/IP sockets User Interface on Linux host –Python shell API or PyQt graphical application –SIDECAR acquisition controls –CRIC acquisition controls –ICU controls and settings –Configuration upload and dump –Image upload and dump –Telemetry display –Message logging –SAO DS9 integration Python command line API or PyQt graphical application provides real- time configuration and control of ICU and Sidecar/CRIC front ends File based Sidecar front end configuration executed via Ethernet load System commanding and telemetry uses CCSDS protocol over Ethernet Python shell API supports integration with offline analysis utilities PyQt graphical application provides interactive system control

13 SLAC Support for SNAP Development of tracker (fine guider) using 4k x 4k HyViSi FPA. Instrument Control Unit EGSE setups for Caltech, Teledyne, French spectrograph group, I&T site… Software support, modifications to optimize performance of detectors. CCD imager ASICs

14 Future Possibilities for SLAC Participation/Support for SNAP Electronics Engineering expertise Mechanical Engineering expertise Experienced space qualified technicians Computing support - SLAC experience with large datasets/database Analysis pipeline

15 Conclusions Although LBNL is the lead DoE laboratory on SNAP, SLAC has a vital role to play. SLAC is already proving to be a valuable partner in SNAP through the development of flight electronics and software. SLAC is an ideal partner for university groups that do not have the facilities and experienced manpower present at SLAC. As a new type of SLAC user, I am extremely grateful for SLAC participation in SNAP and their contributions to the NIR program. I hope/expect that the association of the SNAP NIR group and SLAC will continue to grow.


Download ppt "SuperNova/Acceleration Probe L U O SLAC User’s Organization Meeting “Redefining the User Facility” February 7, 2008 Gregory Tarlé University of Michigan."

Similar presentations


Ads by Google