Presentation is loading. Please wait.

Presentation is loading. Please wait.

Web 2.0 的技術與應用 曾憲雄 教授 交通大學 資訊工程學系 2009/4/14. 2 Human Intelligence vs. Machine Intelligence 在 1997 年許峰雄博士所設計的 IBM Deep Blue 打敗世界西洋棋王 Kasparov 。 電腦是否已經比人腦聰明?

Similar presentations


Presentation on theme: "Web 2.0 的技術與應用 曾憲雄 教授 交通大學 資訊工程學系 2009/4/14. 2 Human Intelligence vs. Machine Intelligence 在 1997 年許峰雄博士所設計的 IBM Deep Blue 打敗世界西洋棋王 Kasparov 。 電腦是否已經比人腦聰明?"— Presentation transcript:

1 Web 2.0 的技術與應用 曾憲雄 教授 交通大學 資訊工程學系 2009/4/14

2 2 Human Intelligence vs. Machine Intelligence 在 1997 年許峰雄博士所設計的 IBM Deep Blue 打敗世界西洋棋王 Kasparov 。 電腦是否已經比人腦聰明?

3 3 Web 2.0 Web 2.0 的世界 : – 網路成為新平臺 – 內容因使用者的參與( Participation )而產生 產生個人化( Personalization )內容 藉由人與人( P2P )的分享( Share )。 Web 2.0 概念 : –Tim O‘Reilly 與 MediaLive 國際研討會議題開始 – 一個架構在知識上的環境, – 人與人之間互動而產生出的內容, – 經由在服務導向的架構中的程式,在這個環境被發佈, 管理和使用 http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=3

4 4 Web 1.0 vs. Web 2.0 DoubleClick Ofoto Akamai mp3.com 大英百科 (Britannica Online) 個人網站 (personal websites) evite 網域名稱預測 (domain name speculation 頁面瀏覽數 (page views) 螢幕擷取 (screen scraping) 發佈 (publishing) 內容管理系統 (content management systems) 目錄 ( 分類 ) (directories (taxonomy)) 黏性 (stickiness) Google AdSense Flickr( 相片分享社群 ) BitTorrent(P2P-BT 下載 ) Napster(P2P 音樂下載 ) 維基百科 (Wikipedia) 部落格 (blogging) upcoming.org and EVDB 搜尋引擎優化 (search engine optimization) 每次點擊成本 (cost per click) 網路服務 (web services) 參與 (participation) 維基式管理 (wikis) 標籤 ( 分眾分類 ) (tagging ("folksonomy")) 聚合 (syndication)

5 5 Turing Test Turing Test 是 Turing 提出的一個關於機器人的著名判斷原則。 此原則說:如果一個人使用任意一串問題去詢問兩個他不 能看見的對象:一個是正常思維的人;一個是機器,如果 經過若干詢問以後他不能得出實質的區別,則他就可以認 為該機器業已具備了人的「智能」( Intelligence )。 ( 取材自維基百科 ) 阿蘭 · 麥席森 · 圖靈( Alan Mathison Turing, 1912 - 1954 ),英國數學家、邏輯學家, 他被視為電腦之父。

6 6 長尾效應 ( 網路如同平台 ) ( 自行控制資料 ) ( 服務非套裝軟體 ) ( 參與 ) ( 集體智慧 ) ( 軟體超越單一裝置 )

7 7 Web 2.0 原則 「網路應該作為平台來使用」 (The Web As Platform) 從商業的角度看, Web 2.0 讓泡沫的 dot com 起死 回生 ? –Yahoo, e-Bay, Amazon 都不是新公司。 –Google 不是第一個免費的搜索引擎。 (AltaVista & Overture?) – 搜尋結果的排序 加入商業考量,正在降低公信力。 部落格 (Blog) 的崛起 : 個人網頁每天記載的日記形式 – 依時間前後排列方式組成,利用不同的遞送方式來散佈個 人的想法與觀點,並且組成價值鏈 Web 1.0: –Netscape 跟微軟抗衡時所提出來的口號 : –1.0 VS 2.0: Netscape 與. Google

8 8 Web 2.0 原則 引領群體智慧 : 超連結是網路的基礎。 –Google 在搜尋領域中突圍而出 (PageRank ) –eBay 的產品則是全體用戶集體活動的龐大創造物 : 賣主提供商品,買家尋找商品 – 維基百科( Wikipedia ) : 眾多網路用戶所提供的知識為基礎,任何人皆可編輯修改 而成的線上百科全書。 –del.icio.us 及 Flickr ( bookmarks) : 「大眾分類」( Folksonomy )的概念 – 病毒行銷」( Viral marketing ) : 採用直接從一個用戶到另一個用戶的方式來傳播訊息

9 9 http://www.slideshare.net/heyjudeonline/creative-web-20-learning RSS (Really Simple Syndication) 技術 : 藉由定期的主動訊息接受,可以得知訂閱的網頁內容有所更動

10 10 Data is the Next Intel Inside 重要的網路應用系統,都有一個專屬資料庫 : –Google & Yahoo : 網路搜尋資料庫( web crawl ) –Amazon: 產品資料庫 –eBay: 產品與賣家資料庫 –Google Map: 地圖資料庫 –Napster: 分散式歌曲資料庫裏 –Myspace 、 Facebook: 社群資料庫 –Youtube 、無名 : 影音相片資料庫, YouTube 的主要 內容貢獻者要求分廣告利益。

11 11 NEWS: 微軟擴大廣告聯盟,砸下 2.4 億美元入股 Facebook Facebook: http://www.facebook.com/ – 社交網站, – 擁有 150 億美元的身價, –( 宣稱 ) 使用者直逼 5,000 萬人 – 超越 MySpace: www.myspace.com WHY??? Source: http://taiwan.cnet.com/news/

12 12 廣告主的天堂 絕佳廣告平台 : – 豐富的個人資料與附加資訊 : 誰 (Who) 與他們往來,他們在做什麼事 (What) 等等。 –  個人偏好 & Social Network 。 [ 聚焦廣告 ](targeted advertising) : – 派送鎖定目標的個人化廣告。 – 成功案例 : Google 、 Amazon 。 範例 : – 已訂婚 Users:  婚紗業者 & 蜜月旅遊方案 & 禮餅 & etc. 。 – 地區 & 年齡 & 音樂喜愛 & [ 七月半 ] 歌手樂團 :  音樂會宣傳 – 愛吃披薩 : 顯示出住家附近 [ 打不樂 ] 披薩門市的電話號碼。 Source: http://taiwan.cnet.com/news/

13 13 Web 2.0 原則 : Service 網路時代的軟體最重要的特徵是服務 (Service) ,而非產品 (Product): –Gmail, Google Maps, Flickr, del.icio.us, etc. 輕巧的程式設計模式 : – 組裝式創新 (Mashup): 整合網路上多個資料來源或功能,以創造新服務的 網路應用程式 –Google Map 、 YouTube 、 Slideshare

14 14 信義房屋 地圖日記

15 15 Web 2.0 企業的核心競爭力 提供服務,而不是套裝軟體,能以符合成本效益 的方式擴充 : –Google Mail, Map. 控制獨特的、難以再製的資料來源,隨著越多人 使用而累積越豐富的資料 : –Wikipedia, Facebook, 無名 使用者為共同的開發者,善用眾人的集體智慧與 自助服務效能 : –Wikipedia, Myspace, Youtube 不再侷限於個人電腦的平台之上 : –iPod / iTunes, Podcasting 輕巧的使用者介面、開發模式、及商業模式 : –Google API, Mashup

16 16 1.Proposing a knowledge-based rapid prototyping approach to TM design for e-Learning grids Traditional teaching-material design process: ADDIE model –Analysis, Design, Develop, Implement, and Evaluate Disadvantage –Time-consuming, Expensive, Redundant effort Alternative : Automated authoring and Reusing existing TMs Challenges/Difficulties –Requirement elicitation –Finding useful TMs from existing ones Minimize Development time, Development cost

17 17 Problem Teaching-Material Designing Problem –For a query given by a teaching-material editor, design a teaching-material, where the designer can interactively consult the editor to elicit the meaning of the query; the existing materials in m LORs can be reused. –The objective is to minimize the total development time.

18 18 Idea Idea: a rapid prototyping approach to designing TMs –Reuse Using expertise to search useful TMs –Automated KA tools are available to speed the process. Automatically merge algorithm –Collaborative authoring Using a Wiki-based authoring environment Design and implementation of a searching expert system to find reusable TMs

19 19 Approach System overview: WARP (Wiki-based Authoring by Rapid Prototyping) Phase 1: to verify user’s query Phase 2: to expand the query Phase 3: to search existing relevant TMs Phase 4: to generate the 1 st version Phase 5: to revise by Wiki-based authoring

20 20 Implementation (1) A Wiki-based authoring environment on grids

21 21 Implementation (2) Grid Configuration The grid test-bed is composed of 4 domains. –Implemented by Globus Toolkit 4.0

22 22

23 23

24 24 http://www.slideshare.net/heyjudeonline/creative-web-20-learning Web 2.0: UGC+SNS

25 25 Social Networking Service (SNS) http://staffdev.henrico.k12.va.us/parents/socnetwork.htm 為一群擁有相同興趣與活動的網友,建立並鞏固網絡上的社交網路網友網絡 提供使用者進行互動 : 聊天、寄信、影音、分享檔案、寫部落格、參加討論群組等等 :部落格 EX: Facebook http://zh.wikipedia.org

26 26 User-Generated Content (UGC) http://www.linuxelectrons.com/news/general/user-generated- web-content-will-grow-rapidly-through-2010

27 27 長尾長尾( The Long Tail ) : Chris Anderson (2004) 發表在 連線雜誌 :Chris Anderson 連線雜誌 – 亞馬遜和 Netflix Real.com Rhapsody 的商業和經濟模式 : 亞馬遜 NetflixReal.com Rhapsody 一半左右的銷售來自於比較熱門的商品, 另一半卻來自相對不那麼熱門的商品 人口( popularity ) 產品( products ) Long Tail 20%

28 28 長尾長尾( The Long Tail ) : 20-80 法則 : – 企業界 80% 的業績來自 20% 的產品 長尾 (The Long Tail): 長尾 – Web2.0 興起後,改變 20-80 法則的新理論Web2.0 –Internet 讓 99% 的產品都有機會銷售 : 長尾特性商品將具有增長企業營利空間的價值。 長尾商品總值甚至可與暢銷商品抗衡。 – 「長尾」的總合也未必超越幾個暢銷品,更何況不只一家 Web 2.0 在分一條長尾。

29 29 2. Folksonomy-based Indexing for Location-aware Retrieval of Learning Contents An example scenario of location-aware u-learning –The “identification of plants” unit of the Nature Science course in an elementary school –Place: campus  System: Can you identify the type of the plant in front of you?  Student: No.  System: What is the color of the flower?  Student: red.  … –The system is aware of the location of the student, and the nearby plants, by sensor technologies and maps.

30 30 Introduction (1) Content Retrieval (CR) is an important task in learning activities. Classification of CR –Personalization adaptive to subjective factors e.g.: user profile, preference, etc. The same query, different persons -> different results –Context-awareness adaptive to objective factors e.g.: time, place, device, activity, peers, etc. The same query, different contexts -> different results

31 31 Introduction (2) Location-aware content retrieval –Advantages: Adaptive Fast –Difficulties: Index creation Maintenance: lack of flexibility in manually constructed ontology Usability: corresponding to the content collection –WordNet Characteristics of learning content are not considered. –Structural information –metadata

32 32 Preliminaries (1) Folksonomy: One of Web 2.0 features –Collaborative categorization using freely chosen keywords –To allow users to describe a set of shared items Bookmarks: del.icio.us Photos: Flickr Scientific publications: CiteULike

33 33 Preliminaries (2) Example: http://del.icio.ushttp://del.icio.us –To store your bookmarks online –To use tags to organize and remember your bookmarks –To see the interesting links that your friends and other people bookmark, and share links with them in return. –You can search del.icio.us to discover cool and useful bookmarks that everyone else has saved Limitations –Informal: the set of keywords is not fixed Semantic ambiguity –Single-layer structure –Limited sharing scope: not crossing the boundaries of a single website

34 34 Folksonomy Definition –Tag: T A set of tags A tag is a user-defined keyword –Item: I A set of SCORM-compliant teaching materials –Relation: R A relation on T× I –Folksonomy F = (T, I, R) Example: The folksonomy of User A –T = {t 1, t 2 } –I = {i 1, i 2, i 3, i 4 } –R = {(t 1, i 1 ), (t 1, t 2 ), (t 1, i 3 ), (t 2, i 1 ), (t 2, i 4 )}

35 35 Problem Definition: Index (a rooted tree ) –The nodes represent concepts in the domain, and the edges represent relations between nodes. –A node is a specialization of its parent node. –Each node is associated with a feature vector, which characterizes the semantic meaning of this concept. Folksonomy-based Index Creation Problem –propose a folksonomy-based method to automatically construct location-based indices. The built ontology can be applied to organization and retrieval of learning contents. Given a collection of learning contents and corresponding folksonomies, construct an Index for the collection. –Precision and recall of retrieval using the built index

36 36 http://www.slideshare.net/heyjudeonline/creative-web-20-learning

37 37 網路世代 (N-gen) 吸收資訊快,資訊多元. 反應速度快. 需求為主 (on-demand) 地使用媒體 : – 喜歡在持續與朋友通訊 ( MSN 、 QQ 、 Skype) 喜歡自行創作與分享

38 38 e-learning 2.0 精神 : 自主學習、參與、分享、討論 Teacher-centered Learning 學生選擇少 學生被動 教師掌控權力 http://www.aishe.org/readings/2005-1/oneill-mcmahon-Tues_19th_Oct_SCL.html#x1-30011 Student-centered Learning 學生選擇多 學生主動 學生掌控權力

39 39 eLearning 2.0 模式 基於 Web 2.0 與 elearning 新趨勢的新模式 : – 學生製作內容 (students create content) – 協同合作 (collaboration) 利用 blogs, Wikis, discussions, RSS, etc. – 組成學習網路 (Learning Network). – 利用多元組成的內容來得到學習經驗 (learning experiences). – 利用多元工具 : online references, courseware, knowledge management, collaboration 與 search.

40 40 http://www.slideshare.net/heyjudeonline/creative-web-20-learning

41 41 http://www.slideshare.net/akarrer/elearning-20-karrer-astd-oc-2007 Small-Medium Enterprise

42 42 http://www.slideshare.net/akarrer/elearning-20-karrer-astd-oc-2007

43 43 Learning Community 知識的建構 (Knowledge construction): – 最好經由協同合作 (Collaboration) 來完成. 學生於同學間經由供給與獲得 (give-and-take) 來進行學習 : – 當學生寫下貢獻 (contributions) 於討論時 : 學生將學習到他們想說之事 他們所得之回應將可促進學習

44 44 學習與遊戲模型對應

45 45 網路遊戲沉迷原因 美國羅切斯特大學研究成果 : – 因為網路遊戲滿足了人們的心理需要 – 心理上產生成就感和自我支配感 : 只有讓遊戲者與其他參與者互動的遊戲才能使遊戲 者更加投入,更加樂此不疲,也更容易上癮 讓遊戲者自行做主,展示自己的能力,還可讓遊戲 者支配他人或得到他人的呼應和支援。 如果網路遊戲只是單純地向人們提供 “ 樂趣 ” 的話, 就不可能讓人長久著迷。

46 46 Game based learning community Web 1.0: – 存取民主化 (Democratization of Access) Web 2.0 : – 參與與協同合作民主化 (Democratization of Participation and Collaboration) Web 3D : – 虛擬學習與共創 –(Enablement of true generative learning and co- creation distributed virtually across the world).

47 47 非 Learning 社群

48 48 非 Learning 社群

49 49 Second Life 誕生於 2003 年 : – 為 RealNetwork 前任技術長 Philip Rosedale 於舊金山成立林頓 軟體公司( Linden Lab ) 社交導向的線上遊戲 : – 大規模多人線上角色扮演遊戲( MMORG )。 – 遊戲無技能點數、經驗值、等級、打怪或轉職,沒任務、解謎或組隊 。 實際經濟 : – 每 1,000 個林頓元約可兌換 3.3 美元。 – 月費為 9.95 美元,會員約 90 萬名,每月會費收入高達 895.5 萬美元,約當 於新台幣 2.95 億元。 學習應用 : – 某些大學教授會到 Second Life 裡開堂授課 – 學生在裡面做實驗,也有醫生在裡面開起了診所,提供醫療諮詢服務 – 公益人士成立支持血癌患者的團體 –Toyota 及 Sun Microsystems 進駐 : 增加其產品的知名度。 www.secondlife.com/

50 50

51 51 CyberOne Classroom in Second Life Source: http://blogs.law.harvard.edu/vvvv/files/2006/09/CyberOne_2006-09-21.pnghttp://blogs.law.harvard.edu/vvvv/files/2006/09/CyberOne_2006-09-21.png

52 52 Virtual Presence: Second Life Library 2.0

53 53 Virtual Learning: EduNation-Second Life

54 54 Social Network Service Social Network Service (SNS) –Myspace, Facebook, Friendster, etc. SNS: provide low cost social communication medium with other people Recommend possible new friends –From your friend’s friend –Interest in the same topics Idea: human resource hunting –e.g. Expert finding for problem solving

55 55 3. Trustworthy experts finding service to improve the social network for problem solving Recommend experts to students’ for programming inquiry learning Technical Issues –Trustworthiness –Availability –Domain expertise Obtain the preference of experts from the behaviors on the discussion forum

56 56 Model the Topic interest Ontology: hierarchical structure to represent the topic

57 57 Trustworthy Expert Finding Service

58 58 Criteria Domain expertise –Experts with similar topic interest are obtained from experts’ posting documents on the forum. Trustworthiness –The trustworthiness values are computed by the experts’ average reputation degrees given by other community members. Availability –The availability is heuristically obtained by the weighted average of experts’ presence frequency online.

59 59 Contribution Inquiry-based learning is applied for students’ programming problem solving on Web forum. The trustworthy experts finding service has been proposed to improve the social network for problem solving.

60 60 Collective Intelligence Collective Intelligence: group intelligence that emerges from collaboration and competition of many individuals –e.g. Wikipedia Collaborative knowledge construction –Knowledge integration –Knowledge fusion –Folksonomy-based approach

61 61 4. Ontology construction from folksonomies

62 62 Ontology Inconsistency, redundancy issues Hierarchical Cycle Hierarchical Redundant Exclusive Violation Unreachable Prerequisite Cycle

63 63 Goal: Social Agreement Ontology Ontology Crystallization Problem : ”how do we construct the ontology via community to achieve social agreement”. Refine and Converge Knowledge Social Agreement Ontology

64 64 Iterative, Collaborative Ontology Construction Iterative convergence approach can reduce the updating effort –Wiki-like ontology editor to track the revision log –Delphi-like consensus building approach can resolve the inconsistency by predefined questionnaire template

65 65 Questionnaire item templates to assist the inconsistency resolution Item TypeQuestionnaire Item Templates T 1 : Likert five-point scales Do you agree or disagree with this relationship? Concept (C i ) Relation (r m ) Concept (C j ) (1)Strongly Agree (2)Agree (3)Not Agree and Not Disagree (4)Disagree (5)Strongly Disagree T 2 : True/False Do you agree or disagree with this relationship? Concept (C i ) Relation (r m ) Concept (C j ) (1)Agree (2)Disagree T 3 : Multiple concepts selection What is your opinion about which following Concept (C X ) is the most suitable for Concept (C X /C i ) Relation (r m ) Concept (C j /C x ) ? (1)Concept 1 (2)Concept 2 (3) … (n) Concept n (n+1) Not Above All (, where n ≦ 5) T 4 : Multiple relation selection What is your opinion about which following Relation (r m ) that is the most suitable to describe the relationship between Concept (C i ) and Concept (C j ) ? (1)Relation 1 (2)Relation 2 (3) … (n) Relation n (n+1) Not Above All (, where n ≦ 5)

66 66 System implementation Wiki-like Ontology Editor Questionnaire

67 67 Usability of the ICOC system Questionnaire ItemMeanSD Q 1. The ontology construction using ICOC system has higher efficiency. 4.000.79 Q 2. The ontology construction using ICOC system has higher flexibility. 2.650.88 Q 3. The conflict resolution of ICOC system is helpful during the ontology construction. 4.300.66 Q 4. The ontology construction using ICOC system has higher reliability. 3.600.68 Q 5. The ontology construction using the ICOC system has better ontology quality. 4.101.02 Likert’s five point scale: from 5 (strongly agree) to 1 (strongly disagree)

68 68 Contribution The inconsistency and redundancy of folksonomy-based approach was modeled as Ontology Crystallization Problem The iterative, collaborative convergence process was proposed The experimental result shows the ICOC system is feasible and effective.

69 69 結論 「長尾理論」也無法否認 20% 的網站正在 吸引 80% 目光的事實。 Web 2.0 : 網路上資訊分享的現象與環境 – 把 Web 2.0 做為商業手段時,正在使 dot com 夢想成真,但並不保證是一個獲利模式。 –UGC+SNS 這個現象,正在改變許多科學研究 的方法。

70 The END


Download ppt "Web 2.0 的技術與應用 曾憲雄 教授 交通大學 資訊工程學系 2009/4/14. 2 Human Intelligence vs. Machine Intelligence 在 1997 年許峰雄博士所設計的 IBM Deep Blue 打敗世界西洋棋王 Kasparov 。 電腦是否已經比人腦聰明?"

Similar presentations


Ads by Google