Download presentation

Presentation is loading. Please wait.

1
Physics 1502: Lecture 17 Today’s Agenda Announcements: –Midterm 1 distributed today Homework 05 due FridayHomework 05 due Friday Magnetism

2
Trajectory in Constant B Field F F v R x x x v B q Suppose charge q enters B field with velocity v as shown below. (v B) What will be the path q follows? Force is always to velocity and B. What is path? –Path will be circle. F will be the centripetal force needed to keep the charge in its circular orbit. Calculate R:

3
Radius of Circular Orbit Lorentz force: centripetal acc: Newton's 2nd Law: x x x v F B q F v R This is an important result, with useful experimental consequences !

4
Ratio of charge to mass for an electron e-e- 3) Calculate B … next week; for now consider it a measurement 4) Rearrange in terms of measured values, V, R and B 1) Turn on electron ‘gun’ VV ‘gun’ 2) Turn on magnetic field B R &

5
Lawrence's Insight "R cancels R" We just derived the radius of curvature of the trajectory of a charged particle in a constant magnetic field. E.O. Lawrence realized in 1929 an important feature of this equation which became the basis for his invention of the cyclotron. R does indeed cancel R in above eqn. So What?? –The angular velocity is independent of R!! –Therefore the time for one revolution is independent of the particle's energy! –We can write for the period, T=2 / or T = 2 m/qB –This is the basis for building a cyclotron. Rewrite in terms of angular velocity !

6
The Hall Effect c d l a c B B I I - vdvd F Hall voltage generated across the conductor qE H Force balance Using the relation between drift velocity and current we can write:

7
The Laws of Biot-Savart & Ampere x R r P I dx dl I

8
Calculation of Electric Field Two ways to calculate the Electric Field: Coulomb's Law: Gauss' Law What are the analogous equations for the Magnetic Field? "Brute force" "High symmetry"

9
Calculation of Magnetic Field Two ways to calculate the Magnetic Field: Biot-Savart Law: Ampere's Law These are the analogous equations for the Magnetic Field! "Brute force" I "High symmetry"

10
Biot-Savart Law… bits and pieces I dl dB X r So, the magnetic field “circulates” around the wire B in units of Tesla (T) A 0 = 4 X 10 -7 T m /A

11
Magnetic Field of Straight Wire Calculate field at point P using Biot-Savart Law: Rewrite in terms of R, : x R r P I dx Which way is B?

12
Magnetic Field of Straight Wire x R r P I dx

14
Lecture 17, ACT 1 I have two wires, labeled 1 and 2, carrying equal current, into the page. We know that wire 1 produces a magnetic field, and that wire 2 has moving charges. What is the force on wire 2 from wire 1 ? (a) Force to the right (b) Force to the left (c) Force = 0 Wire 1 I X Wire 2 I X B F

15
Force between two conductors Force on wire 2 due to B at wire 1: Total force between wires 1 and 2: Force on wire 2 due to B at wire 1: Direction: attractive for I 1, I 2 same direction repulsive for I 1, I 2 opposite direction

16
Circular Loop x z R R Circular loop of radius R carries current i. Calculate B along the axis of the loop: Magnitude of dB from element dl: r dB r z What is the direction of the field? Symmetry B in z-direction.

17
Circular Loop Note the form the field takes for z>>R: Expressed in terms of the magnetic moment: note the typical dipole field behavior! x z R R r r dB z

18
Circular Loop R B z z 0 0 1 z 3

19
Lecture 17, ACT 2 Equal currents I flow in identical circular loops as shown in the diagram. The loop on the right (left) carries current in the ccw (cw) direction as seen looking along the +z direction. –What is the magnetic field B z (A) at point A, the midpoint between the two loops? (a) B z (A) < 0 (b) B z (A) = 0 (c) B z (A) > 0

20
Lecture 17, ACT 3 Equal currents I flow in identical circular loops as shown in the diagram. The loop on the right (left) carries current in the ccw (cw) direction as seen looking along the +z direction. (a) B z (B) < 0 (b) B z (B) = 0 (c) B z (B) > 0 – What is the magnetic field B z (B) at point B, just to the right of the right loop?

22
Magnetic Field of Straight Wire Calculate field at distance R from wire using Ampere's Law: Ampere's Law simplifies the calculation thanks to symmetry of the current! ( axial/cylindrical ) dl R I Choose loop to be circle of radius R centered on the wire in a plane to wire. –Why? »Magnitude of B is constant (fct of R only) »Direction of B is parallel to the path. –Current enclosed by path = I –Evaluate line integral in Ampere’s Law: –Apply Ampere’s Law:

24
What is the B field at a distance R, with R<a (a: radius of wire)? Choose loop to be circle of radius R, whose edges are inside the wire. –Current enclosed by path = J x Area of Loop B Field inside a Long Wire ? R I Radius a –Why? »Left Hand Side is same as before. –Apply Ampere’s Law:

25
Review: B Field of a Long Wire Inside the wire: (r < a) Outside the wire: (r>a) r B a

26
Lecture 17, ACT 4 A current I flows in an infinite straight wire in the +z direction as shown. A concentric infinite cylinder of radius R carries current I in the -z direction. –What is the magnetic field B x (a) at point a, just outside the cylinder as shown? 2A (a) B x (a) < 0 (b) B x (a) = 0 (c) B x (a) > 0

27
Lecture 17, ACT 4 A current I flows in an infinite straight wire in the +z direction as shown. A concentric infinite cylinder of radius R carries current I in the -z direction. 2B (a) B x (b) < 0 (b) B x (b) = 0 (c) B x (b) > 0 – What is the magnetic field B x (b) at point b, just inside the cylinder as shown?

28
B Field of a Solenoid A constant magnetic field can (in principle) be produced by an sheet of current. In practice, however, a constant magnetic field is often produced by a solenoid. If a << L, the B field is to first order contained within the solenoid, in the axial direction, and of constant magnitude. In this limit, we can calculate the field using Ampere's Law. L A solenoid is defined by a current I flowing through a wire which is wrapped n turns per unit length on a cylinder of radius a and length L. a

31
B Field of a Solenoid To calculate the B field of the solenoid using Ampere's Law, we need to justify the claim that the B field is 0 outside the solenoid. To do this, view the solenoid from the side as 2 current sheets. x x xxx The fields are in the same direction in the region between the sheets (inside the solenoid) and cancel outside the sheets (outside the solenoid). x x xxx Draw square path of side w: (n: number of turns per unit length)

33
Toroid Toroid defined by N total turns with current i. B=0 outside toroid! (Consider integrating B on circle outside toroid) To find B inside, consider circle of radius r, centered at the center of the toroid. x x x x x x x x x x x x x x x x r B Apply Ampere’s Law:

34
Magnetic Flux Define the flux of the magnetic field through a surface (closed or open) from: Gauss’s Law in Magnetism dS B B

36
Magnetism in Matter When a substance is placed in an external magnetic field B o, the total magnetic field B is a combination of B o and field due to magnetic moments (Magnetization; M): – B = B o + o M = o (H +M) = o (H + H) = o (1+ ) H »where H is magnetic field strength is magnetic susceptibility Alternatively, total magnetic field B can be expressed as : –B = m H »where m is magnetic permeability » m = o (1 + ) All the matter can be classified in terms of their response to applied magnetic field: –Paramagnets m > o –Diamagnets m < o –Ferromagnets m >>> o

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google