Presentation is loading. Please wait.

Presentation is loading. Please wait.

Agust,www,...januar09/Profun-110209ak.ppt. 1) 1) Ed(0), J´=0 – EVv´=8,J´=0 = 45.553 cm-1 3) 3) Ef(2), J´=5 – EVv´=8,J´=5 = 17.14 cm-1 2) EVv´=9, J´=5.

Similar presentations


Presentation on theme: "Agust,www,...januar09/Profun-110209ak.ppt. 1) 1) Ed(0), J´=0 – EVv´=8,J´=0 = 45.553 cm-1 3) 3) Ef(2), J´=5 – EVv´=8,J´=5 = 17.14 cm-1 2) EVv´=9, J´=5."— Presentation transcript:

1 agust,www,...januar09/Profun-110209ak.ppt

2 1) 1) Ed(0), J´=0 – EVv´=8,J´=0 = 45.553 cm-1 3) 3) Ef(2), J´=5 – EVv´=8,J´=5 = 17.14 cm-1 2) EVv´=9, J´=5 – EDv´=0,J´=5 = 164.24 cm-1 2) 4) 4) EVv=10, J´=3 – Egv=0 J´=3 = 106.64 cm-1 agust,heima,...january09/Profun-080209ak.pxp <= agust, heima,...january09Term values for triplet paper-080209kmak.xls

3 f3D1 (0) 82544.07 82585.60 82647.27 82729.51 82832.47 82956.54 83100.74 av term 82509.27 82548.29 82606.68 82684.29 82781.5 82896.94 83027.44 DE(f3D1- D1Pi1) 34.8 37.31 40.59 45.22 50.97 59.60 73.30 D 1  1 (v´=0) J´ 0 1 2 3 4 5 6 7 agust, heima,...january09/Term values for triplet paper-110209kmak.xls Term f3D1 (v=0) 82544,07 82585,60 82647,27 82729,51 82832,47 82956,54 83100,74 J' 0 1 2 3 4 5 6 7 Term g3Sm0(0) 83088,0 83103,1 83133,5 83179,9 83242,5 83322,1 83418,1 DE(g3Sm0p -f3D1) 559,00 547,91 532,60 513,03 489,67 461,60  =1 / heterogeneous triplet Term f3D1 (0) J' 0 182544,07 282585,60 382647,27 482729,51 582832,47 682956,54 783100,74 av terms 83288,27 83331 83391,37 83463,27 83530,34 DE(g3Sm 1-f3D1 744,20 745,40 744,10 733,77 697,87 g3Sm1 Term f3D1 (0)g3Sp1(v=0) J'New State DE(f3D1- g3Sp1) 0Q 182544,07Q 82541,7 2,37 282585,60S 82582,3 3,30 382647,27S 82643,7 3,57 482729,51S 82725,7 3,81 582832,47S 82827,9 4,57 682956,54S 82950,2 6,34 783100,74S 83092,2 8,54 83253,1  =0 homogeneous triplet singlet  =0 homogeneous triplet  =0 homogeneous triplet Term f3D1 (0) 82544,07 82585,60 82647,27 82729,51 82832,47 82956,54 83100,74 J' 0 1 2 3 4 5 6 7 Term V1S (9) 82839,70 82847,17 82861,81 82883,27 82911,64 82946,14 82986,73 83029,23 DE(f3D1- Vv9) -303,10 -276,21 -236,00 -182,13 -113,67 -30,19 71,51  =1 / heterogeneous triplet singlet Term g3Sp1(v= 0) New State Q 82541,7 82582,3 82643,7 82725,7 82827,9 82950,2 83092,2 83253,1 J' 0 1 2 3 4 5 6 7 Term V1S (9) 82839,70 82847,17 82861,81 82883,27 82911,64 82946,14 82986,73 83029,23 DE(g3Sp1(v =0)-Vv9) -305,47 -279,51 -239,57 -185,94 -118,24 -36,53 62,97

4 agust,heima,...january09/Profun-100209ak.pxp <= agust, heima,...january09Term values for triplet paper-100209kmak.xls

5 EE f 3  1 – D 1  1 J´ agust,heima,...january09/Profun-100209ak.pxp <= agust, heima,...january09Term values for triplet paper-100209kmak.xls

6 EE f 3  1 – g 3  + 1 J´ agust,heima,...january09/Profun-100209ak.pxp <= agust, heima,...january09Term values for triplet paper-100209kmak.xls

7 EE f 3  1 - V,v´=9 J´ agust,heima,...january09/Profun-100209ak.pxp <= agust, heima,...january09Term values for triplet paper-100209kmak.xls

8 EE g 3   1 - V,v´=9 J´ agust,heima,...january09/Profun-110209ak.pxp <= agust, heima,...january09Term values for triplet paper-110209kmak.xls

9 EE f 3  1 - g 3  - 0 J´ agust,heima,...january09/Profun-100209ak.pxp <= agust, heima,...january09Term values for triplet paper-100209kmak.xls

10 agust,heima,...january09/Profun-100209ak.pxp <= agust, heima,...january09 / Term values for triplet paper-100209kmak.xls EE f 3  1 - g 3  - 1 J´

11 The question arose whether the “New state” (assigned as g 3  + (1) from Q lines) could simply be Q lines for the f 3  1 <-<-X 1  + ??? Factors which favour that are: 1) Term values for “New state” (derived from Q lines; Term values for triplet paper-110209kmak.xls ) are close to that for f 3  1 derived from S lines (see slides 3, 7 And 8 above) 2) B´s are similar: B´(“New state” ) 10.26 cm -1 ; B´(f 3  1 ) = 10.293 cm -1 3) 0 ´s are similar: 0 (New state) = 82521.2 cm -1 ; f 3  1 ) = 82523.65 cm -1 Arguments agains it (from KM): 1) Although difference in term values is small it is significant and simultaneous simulation of line positions for Q lines in the “New state” spectrum and line positions for S lines in the f 3  1 <-<-X 1  + spectrum can not be done for a unique set of B´(and D´) values: Thus if the S lines are fitted the position of the Q lines will be at higher cm-1 and close to the Q line near 82523.65 cm-1 which Green et al assigned as the Q line peak for the f 3  1 <-<-X 1  + spectrum. 2) The single peak at 82523.65 cm -1 which Green et al. assigned as the Q line peak can not be assigned to any other nearby system which favours the Greens assignment.

12 3) A single peak for a Q line serie is obtained for  = 1 (i.e. For  ´ = 1 (  ´´=0), whereas different shapes are obtained for  = 0 and  = 2, roughly:  =0  =1  =2 Hunds case c  =0  =1  =2 Hunds cas a-b 3  + (1) assuming Hunds case (b) 3  (1) assuming Hunds case (c) 3  (1) assuming Hunds case (a) 3  + (1) assuming Hunds case (c) Most likely a) a) Shape closes to that observed for “new state” 4) Good fit was obtained for P and R lines using the other set Of B´and D´values derived by Green et al.


Download ppt "Agust,www,...januar09/Profun-110209ak.ppt. 1) 1) Ed(0), J´=0 – EVv´=8,J´=0 = 45.553 cm-1 3) 3) Ef(2), J´=5 – EVv´=8,J´=5 = 17.14 cm-1 2) EVv´=9, J´=5."

Similar presentations


Ads by Google