Presentation is loading. Please wait.

Presentation is loading. Please wait.

Plasmas are conductive assemblies of charged particles, neutrals and fields that exhibit collective effects. Further, plasmas carry electrical currents.

Similar presentations


Presentation on theme: "Plasmas are conductive assemblies of charged particles, neutrals and fields that exhibit collective effects. Further, plasmas carry electrical currents."— Presentation transcript:

1 Plasmas are conductive assemblies of charged particles, neutrals and fields that exhibit collective effects. Further, plasmas carry electrical currents and generate magnetic fields. Plasmas are the most common form of matter, comprising more than 99% of the visible universe, and permeate the solar system, interstellar and intergalactic environments. Plasmas are radically multiscale in two senses (1) most plasma systems involve electro- dynamic coupling across micro-, meso- and macroscale and (2) plasma systems occur over most of the physically possible ranges in space, energy and density scales. The figure here illustrates where many plasma systems occur in terms of typical densities and temperatures. On earth we live upon an island of "ordinary" matter. The different states of matter generally found on earth are solid, liquid, and gas. We have learned to work, play, and rest using these familiar states of matter. Sir William Crookes, an English physicist, identified a fourth state of matter, now called plasma, in 1879.

2 Plasma consists of a collection of free- moving electrons and ions - atoms that have lost electrons. Energy is needed to strip electrons from atoms to make plasma. The energy can be of various origins: thermal, electrical, or light (ultraviolet light or intense visible light from a laser). With insufficient sustaining power, plasmas recombine into neutral gas. Plasma can be accelerated and steered by electric and magnetic fields which allows it to be controlled and applied. Plasma research is yielding a greater understanding of the universe. It also provides many practical uses: new manufacturing techniques, consumer products, and the prospect of abundant energy.many practical uses

3 Xenon and neon atoms, the atoms used in plasma screens, release light photons when they are excited. Mostly, these atoms release ultraviolet light photons, which are invisible to the human eye. But ultraviolet photons can be used to excite visible light photons The plasma behind the plasma TV screen The basic idea of a plasma display is to illuminate tiny colored fluorescent lights to form an image. Each pixel is made up of three fluorescent lights -- a red light, a green light and a blue light. Just like a CRT television, the plasma display varies the intensities of the different lights to produce a full range of colors. The central element in a fluorescent light is a plasma, a gas made up of free-flowing ions (electrically charged atoms) and electrons (negatively charged particles). Under normal conditions, a gas is mainly made up of uncharged particles. That is, the individual gas atoms include equal numbers of protons (positively charged particles in the atom's nucleus) and electrons. The negatively charged electrons perfectly balance the positively charged protons, so the atom has a net charge of zero. If you introduce many free electrons into the gas by establishing an electrical voltage across it, the situation changes very quickly. The free electrons collide with the atoms, knocking loose other electrons. With a missing electron, an atom loses its balance. It has a net positive charge, making it an ion.

4 Inside the Display The xenon and neon gas in a plasma television is contained in hundreds of thousands of tiny cells positioned between two plates of glass. Long electrodes are also sandwiched between the glass plates, on both sides of the cells. The address electrodes sit behind the cells, along the rear glass plate. The transparent display electrodes, which are surrounded by an insulating dielectric material and covered by a magnesium oxide protective layer, are mounted above the cell, along the front glass plate. Both sets of electrodes extend across the entire screen. The display electrodes are arranged in horizontal rows along the screen and the address electrodes are arranged in vertical columns. As you can see in the diagram below, the vertical and horizontal electrodes form a basic grid. When the intersecting electrodes are charged (with a voltage difference between them), an electric current flows through the gas in the cell. As we saw in the last section, the current creates a rapid flow of charged particles, which stimulates the gas atoms to release ultraviolet photons.

5 The released ultraviolet photons interact with phosphor material coated on the inside wall of the cell. Phosphors are substances that give off light when they are exposed to other light. When an ultraviolet photon hits a phosphor atom in the cell, one of the phosphor's electrons jumps to a higher energy level and the atom heats up. When the electron falls back to its normal level, it releases energy in the form of a visible light photon. The phosphors in a plasma display give off colored light when they are excited. Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel. Pixel

6 If you sit 10 feet away from a 36-inch regular TV, Weber explains, you can't tell the difference between a normal picture and the high-definition standard toward which the TV industry is moving. You could widen the cathode ray tube—the venerable device that gave TV its nickname "The Tube"—to the 60 or more inches required to see a one-millimeter pixel at 10 feet. But the tube can't get wider without getting deeper, so you would have to knock out a door and use a forklift to get a big one into your living room. Projection systems have spatial limitations of their own caused by the placement of the projector and screen, and they require a dark room for good results. Liquid crystal displays have the advantage of thinness (that's why they are great for laptops), but they are not as bright as plasma displays, they can't yet be made as wide, and their pictures disappear when viewed from the side. Fırat DADAŞ Larry Weber (BSEE '69, MSEE '71, PhD '75)


Download ppt "Plasmas are conductive assemblies of charged particles, neutrals and fields that exhibit collective effects. Further, plasmas carry electrical currents."

Similar presentations


Ads by Google