Presentation is loading. Please wait.

Presentation is loading. Please wait.

ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 1 D – D Correlations as a Sensitive Probe of Light – quark Thermalization Kai Schweda, University.

Similar presentations


Presentation on theme: "ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 1 D – D Correlations as a Sensitive Probe of Light – quark Thermalization Kai Schweda, University."— Presentation transcript:

1 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 1 D – D Correlations as a Sensitive Probe of Light – quark Thermalization Kai Schweda, University of Heidelberg A. Dainese, X. Dong, J. Faivre, Y. Lu, H.G. Ritter, L. Ruan, A. Shabetai, P. Sorensen, N. Xu, H. Zhang, Y. Zhang.

2 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 2 Outline 1)Introduction 2)Strange  quark flow: partonic collectivity 3)Heavy  quark collectivity 4)Summary

3 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 3 Quark Gluon Plasma Source: Michael Turner, National Geographic (1996) Quark Gluon Plasma: (a)Deconfined and (b)thermalized state of quarks and gluons  Study partonic EOS at RHIC and LHC (?) Probe thermalization using heavy-quarks

4 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 4 Heavy Ion Collisions 1) Initial condition:2) System evolves:3) Bulk freeze-out: - baryon transfer- parton/hadron expansion- hadronic dof - E T production- interaction cease - Partonic dof T th, Time   Temperature Plot: Steffen A. Bass, Duke University Heavy-Flavor     , K, p T ch = 160-170 MeV T fo = 100 MeV

5 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 5 1) Compared to , K, and p, multi- strange particles ,  are found at lower but higher T ~ T ch  Collectivity prior to hadronization 2) Sudden single freeze-out*: Resonance decays lower T fo for ( , K, p)  Collectivity prior to hadronization  take snapshot at early (partonic?) stage  take snapshot at early (partonic?) stage Kinetic Freeze-out Data: STAR, Data: STAR, Nucl. Phys. A715, 129c(2003). *A. Baran, W. Broniowski and W. Florkowski; nucl-th/0305075

6 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 6 Anisotropy Parameter v 2 y x pypy pxpx coordinate-space-anisotropy  momentum-space-anisotropy Initial/final conditions, EoS, degrees of freedom

7 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 7 v 2 in the Low-p T Region - Minimum bias data! At low p T, model result fits mass hierarchy well! - Details do not work, need more flow in the model ! P. Huovinen, private communications, 2004

8 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 8 v 2 of Multi-strange Hadrons ,  ,  and   do flow = Strangeness flows  partonic collectivity at RHIC ! * Inconsistencies in current hydro calculations STAR Preliminary, QM05 conference

9 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 9 Collectivity, Deconfinement at RHIC - v 2, spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have:  Partonic Collectivity êDeconfinement  Thermalization ? PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04) S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, 034904(03) X. Dong, et al., Phys. Lett. B597, 328(04). ….

10 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 10 Quark Masses X. Zhu, M. Bleicher, K.S., H. Stoecker, N. Xu, et al., hep-ph/0604178, subm. to PRL.  Symmetry is broken:  EW Higss mass  QCD dynamical mass  In QGP, c- and b-quark stay heavy  c- and b-quark good probe for medium created at RHIC/LHC  If heavy quarks flow:  frequent interactions among all quarks  light quarks (u,d,s) likely to be thermalized

11 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 11 The key point is to determine Heavy-Flavor Collectivity D 0, D , D + s,  + C, J/ , …

12 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 12 Non-photonic electron v 2 c (b)  e + X  Large syst. uncertainties due to large background  charm collective flow at p t < 2GeV/c  v 2 (e) favors non-zero v 2 (c) at p T (e)<2 GeV/c. V. Greco et al. PLB 595(2004)202 B. Zhang et al. nucl-th/0502056

13 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 13 J/  Enhancement at RHIC(LHC)  Statistical hadronization  strong centrality dependence of J\  yield at LHC  Need total charm yields !  Measure D 0, D ±,  c  Probe deconfinement and thermalization Calculations: P. Braun Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.  cc

14 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 14 J/  yield vs Centrality Statistical Hadronization Synopsis: - Complete screening of primordial J/ψ’s - J/ψ’s regenerated at chemical freezout from thermalized c-cbars Disagrees with STAR Barely touches PHENIX data Large uncertainties in total c-cbar yield  need precise reference for total charm ! [1] A. Andronic et al., Phys.Lett. B571 (2003) 36-44 [3] STAR, Phys. Rev. Lett. 94 (2005) 062301 [2] PHENIX, Phys.Rev.Lett. 96 (2006) 032001 STAR Preliminary

15 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 15 Multiply Heavy-flavored Hadrons F. Becattini, Phys. Rev. Lett. 95, 022301 (2005); P. Braun Munzinger, K. Redlich, and J. Stachel, nucl-th/0304013.  Statistical hadronization - de-confined heavy-quarks - equilibrated heavy-quarks  Enhancement up to x1000 !  Measure  cc,  cc, B c, (  ccc )  Need total charm yields  Probe deconfinement and thermalization @ LHC  QGP ! Quarks and gluons  hadrons Pb+Pb  ccc / D : p+p x1000

16 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 16  D  Meson Pair Correlations Pythia Calcs.: H. Woehri, priv. comm. Hadronic Transport Model: E.L. Bratkovskaya et al., PRC 71 (2005) 044901.  ccbar pair production: DDbar pairs are correlated !  Here:  correlation  If charm equilibrates  correlations vanish !  Influence of hadronic scattering (small) ? ccbar

17 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 17 Pythia Predictions  p +p : Pyhtia predicts DDbar – correlations  Stronger at larger p T  Back-to-back corr. Modified in QGP ? X. Zhu, M. Bleicher, K.S., H. Stoecker, N. Xu, et al., hep-ph/0604178, subm. to PRL.

18 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 18 c  cbar in QGP  Langevin approach - describe c-quarks in QGP - a: momentum-space diffusion - fragment c  hadrons  At small p T corr. smear out  At large p T corr. preserved  Heavy-quark resonances in QGP  a: increases !  Correlations vanish up to p T = 3 GeV ! X. Zhu, M. Bleicher, K.S., H. Stoecker, N. Xu, et al., hep-ph/0604178, subm. to PRL. RHICLHC

19 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 19 Hadronic Re-scattering  Hadronic re-scattering can not completely wash out DD-correlations  Frequent partonic re-scattering needed  light quark thermalization ! X. Zhu, M. Bleicher, K.S., H. Stoecker, N. Xu, et al., hep-ph/0604178, subm. to PRL.

20 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 20 Summary  Strange – quarks flow , , and   Deconfinement at RHIC  Heavy – quarks (c, b) are precise probes  Measure D  Dbar correlations  Probe (u,d,s)-quark thermalization  Deconfinement + Thermalization = QGP !

21 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 21 STAR @ RHIC / ALICE @ LHC e.g.: D 0  K +  c  = 123  m Measure precisely secondary decay vertex Use silicon pixel technology  precise heavy-flavor measurements at RHIC and LHC ! Heavy Flavor Tracker

22 ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 22 Two Different Ways to Probe Bulk Use high p T as probeProbe the bulk responsePartons lose energy in medium Response of medium to pressure Measure nuclear modification factor R AA Measure elliptic flow v 2 Partonic energy loss dE/dx, gluon density Partonic equation of state EoS  It’s all about interactions  Interactions  collectivity (e.g. flow)  Frequent interactions  Thermalization


Download ppt "ISMD, Paraty, Brazil, Sep 2  Sep 8, 2006 Kai Schweda 1 D – D Correlations as a Sensitive Probe of Light – quark Thermalization Kai Schweda, University."

Similar presentations


Ads by Google