Presentation is loading. Please wait.

Presentation is loading. Please wait.

TinyOS Tutorial Communication Networks I Wenyuan Xu Fall 2006.

Similar presentations


Presentation on theme: "TinyOS Tutorial Communication Networks I Wenyuan Xu Fall 2006."— Presentation transcript:

1 TinyOS Tutorial Communication Networks I Wenyuan Xu Fall 2006

2 Lecture Overview 1. Hardware Primer 2. Introduction to TinyOS 3. Programming TinyOS 4. Network Communication

3 UC Berkeley Family of Motes

4 Mica2 and Mica2Dot ATmega128 CPU  Self-programming  128KB Instruction EEPROM  4KB Data EEPROM Chipcon CC1000  Manchester encoding  Tunable frequency 315, 433 or 900MHz  38K or 19K baud Lower power consumption  2 AA batteries Expansion  51 pin I/O Connector 1 inch

5 MTS300CA Sensor Board

6 Programming Board (MIB510)

7 Hardware Setup Overview

8 Lecture Overview 1. Hardware Primer 2. Introduction to TinyOS 3. Programming TinyOS 4. Network Communication

9 What is TinyOS? An operation system An open-source development environment Not an operation system for general purpose, it is designed for wireless embedded sensor network.  Official website: http://www.tinyos.net/http://www.tinyos.net/ Programming language: NesC (an extension of C) It features a component-based architecture. Supported platforms include Linux, Windows 2000/XP with Cygwin.

10 Install TinyOS and the ‘make’ Download  http://www.tinyos.net/download.html http://www.tinyos.net/download.html Directory Structure /apps /Blink /Forwarder /contrib /doc /tools /java /tos /interfaces /lib /platform /mica /mica2 /mica2dot /sensorboard /micasb /system /types From within the application’s directory:  make (re)install. is an integer between 0 and 255 may be mica2, mica2dot, or all Example: make install.0 mica2  make pc Generates an executable that can be run a pc for

11 Build Tool Chain Convert NesC into C and compile to exec Modify exec with platform-specific options Set the mote ID Reprogram the mote

12 Lecture Overview 1. Hardware Primer 2. Introduction to TinyOS 3. Programming TinyOS 4. Network Communication

13 Characteristics of Network Sensors Small physical size and low power consumption Concurrency-intensive operation  multiple flows, not wait-command-respond Limited Physical Parallelism and Controller Hierarchy  primitive direct-to-device interface Diversity in Design and Usage  application specific, not general purpose  huge device variation => efficient modularity => migration across HW/SW boundary Robust Operation  numerous, unattended, critical => narrow interfaces sensors actuators network storage

14 A Operating System for Tiny Devices? Main Concept  HURRY UP AND SLEEP!! Sleep as often as possible to save power  provide framework for concurrency and modularity Commands, events, tasks  interleaving flows, events - never poll, never block Separation of construction and composition Programs are built out of components  Libraries and components are written in nesC.  Applications are too -- just additional components composed with the OS components Each component is specified by an interface  Provides “hooks” for wiring components together Components are statically wired together based on their interfaces  Increases runtime efficiency

15 Programming TinyOs A component provides and uses interfaces. A interface defines a logically related set of commands and events. Components implement the events they use and the commands they provide: There are two types of components in nesC:  Modules. It implements application code.  Configurations. It assemble other components together, called wiring A component does not care if another component is a module or configuration A component may be composed of other components via configurations ComponentCommandsEvents UseCan callMust implement ProvideMust implementCan signal

16 Component Syntax - Module A component specifies a set of interfaces by which it is connected to other components  provides a set of interfaces to others  uses a set of interfaces provided by others module ForwarderM { provides { interface StdControl; } uses { interface StdControl as CommControl; interface ReceiveMsg; interface SendMsg; interface Leds; } implementation { …// code implementing all provided commands and used events } ForwarderM StdControl ReceiveMsg provides uses CommControl SendMsg Leds

17 Component Syntax - Configuration configuration Forwarder { } implementation { components Main, LedsC; components GenericComm as Comm; components ForwarderM; Main.StdControl -> ForwarderM.StdControl; ForwarderM.CommControl -> Comm; ForwarderM.SendMsg -> Comm.SendMsg[AM_INTMSG]; ForwarderM.ReceiveMsg -> Comm.ReceiveMsg[AM_INTMSG]; ForwarderM.Leds -> LedsC; } Component Selection Wiring the Components together ForwarderM StdControl ReceiveMsg provides uses CommControl SendMsg Leds Main StdControl LedsC Leds GenericComm SendMsg ReceiveMsg StdControl Forwarder

18 Configuration Wires A configuration can bind an interface user to a provider using -> or <-  User.interface -> Provider.interface  Provider.interface <- User.interface Bounce responsibilities using =  User1.interface = User2.interface  Provider1.interface = Provider2.interface The interface may be implicit if there is no ambiguity  e.g., User.interface -> Provider  User.interface -> Provider.interface

19 Interface Syntax- interface StdControl Look in /tos/interfaces/StdControl.nc Multiple components may provide and use this interface Every component should provide this interface  This is good programming technique, it is not a language specification interface StdControl { // Initialize the component and its subcomponents. command result_t init(); // Start the component and its subcomponents. command result_t start(); // Stop the component and pertinent subcomponents command result_t stop(); }

20 Interface Syntax- interface SendMsg Look in /tos/interfaces/SendMsg.nc Includes both command and event. Split the task of sending a message into two parts, send and sendDone. includes AM; // includes AM.h located in \tos\types\ interface SendMsg { // send a message command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg); // an event indicating the previous message was sent event result_t sendDone(TOS_MsgPtr msg, result_t success); }

21 Component implementation module ForwarderM { //interface declaration } implementation { command result_t StdControl.init() { call CommControl.init(); call Leds.init(); return SUCCESS; } command result_t StdControl.start() {…} command result_t StdControl.stop() {…} event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) { call Leds.yellowToggle(); call SendMsg.send(TOS_BCAST_ADDR, sizeof(IntMsg), m); return m; } event result_t SendMsg.sendDone(TOS_MsgPtr msg, bool success) { call Leds.greenToggle(); return success; } Command implementation (interface provided) Event implementation (interface used)

22 {... status = call CmdName(args)... } command CmdName(args) {... return status; } {... status = signal EvtName(args)... } event EvtName)(args) {... return status; } TinyOS Commands and Events

23 TinyOs Concurrency Model TinyOS executes only one program consisting of a set of components. Two type threads:  Task  Hardware event handler Tasks:  Time flexible  Longer background processing jobs  Atomic with respect to other tasks (single threaded)  Preempted by event Hardware event handlers  Time critical  Shorter duration (hand off to task if need be)  Interrupts task and other hardware handler.  Last-in first-out semantics (no priority among events)  executed in response to a hardware interrupt

24 Tasks Provide concurrency internal to a component  longer running operations Scheduling:  Currently simple FIFO scheduler  Bounded number of pending tasks  When idle, shuts down node except clock  Uses non-blocking task queue data structure  Simple event-driven structure + control over complete application/system graph instead of complex task priorities and IPC {... post TaskName();... } task void TaskName {... }

25 TinyOS Execution Contexts Events generated by interrupts preempt tasks Tasks do not preempt tasks Both essential process state transitions Hardware Interrupts events commands Tasks

26 Event-Driven Sensor Access Pattern clock event handler initiates data collection sensor signals data ready event data event handler calls output command device sleeps or handles other activity while waiting conservative send/ack at component boundary command result_t StdControl.start() { return call Timer.start(TIMER_REPEAT, 200); } event result_t Timer.fired() { return call sensor.getData(); } event result_t sensor.dataReady(uint16_t data) { display(data) return SUCCESS; } SENSE Timer Photo LED

27 Lecture Overview 1. Hardware Primer 2. Introduction to TinyOS 3. NesC Syntax 4. Network Communication

28 Inter-Node Communication General idea:  Sender:  Receiver: Fill message buffer with data Specify Recipients Pass buffer to OS Determine when message buffer can be reused OS Buffers incoming message in a free buffer Signal application with new message OS obtains free buffer to store next message

29 TOS Active Messages Message is “active” because it contains the destination address, group ID, and type. ‘group’: group IDs create a virtual network  an 8 bit value specified in /apps/Makelocal The address is a 16-bit value specified by “make”  – make install. mica2 “length” specifies the size of the message. “crc” is the check sum typedef struct TOS_Msg { // the following are transmitted uint16_t addr; uint8_t type; uint8_t group; uint8_t length; int8_t data [TOSH_DATA_LENGTH ]; uint16_t crc; // the following are not transmitted uint16_t strength; uint8_t ack; uint16_t time; uint8_t sendSecurityMode; uint8_t receiveSecurityMode; } TOS_Msg; PreambleHeader (5)Payload (29)CRC (2) Sync

30 TOS Active Messages (continue)

31 Sending a message Define the message format Define a unique active message number How does TOS know the AM number? configuration Forwarder { } implementation { … ForwarderM.SendMsg -> Comm.SendMsg[AM_INTMSG]; ForwarderM.ReceiveMsg -> Comm.ReceiveMsg[AM_INTMSG]; } struct Int16Msg { uint16_t val; }; enum { AM_INTMSG = 47 }; File: Int16Msg.h includes Int16Msg; module ForwarderM { //interface declaration } implementation { event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) { call Leds.yellowToggle(); call SendMsg.send(TOS_BCAST_ADDR, sizeof(IntMsg), m); return m; } event result_t SendMsg.sendDone(TOS_MsgPtr msg, bool success) { call Leds.greenToggle(); return success; } destination length

32 Receiving a message Define the message format Define a unique active message number How does TOS know the AM number? configuration Forwarder { } implementation { … ForwarderM.SendMsg -> Comm.SendMsg[AM_INTMSG]; ForwarderM.ReceiveMsg -> Comm.ReceiveMsg[AM_INTMSG]; } struct Int16Msg { uint16_t val; }; enum { AM_INTMSG = 47 }; File: Int16Msg.h includes Int16Msg; module ForwarderM { //interface declaration } implementation { event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr m) { call Leds.yellowToggle(); call SendMsg.send(TOS_BCAST_ADDR, sizeof(IntMsg), m); return m; } event result_t SendMsg.sendDone(TOS_MsgPtr msg, bool success) { call Leds.greenToggle(); return success; } Message received

33 Where exactly is the radio stuff? CC1000RadioC CC1000RadioIntM StdControl ReceiveMsg BareSendMsg StdControl BareSendMsg ReceiveMsg Mica2

34 Spi bus interrupt handler Connection between Chipcon CC1000 radio and the ATmega128 processor: SPI bus. Spibus interrupt handler: SpiByteFifo.dataReady() SpiByteFifo.dataReady() will be called every 8 ticks. file:CC1000RadioIntM.nc async event result_t SpiByteFifo.dataReady(uint8_t data_in) { … switch (RadioState) { case RX_STATE: {...} case DISABLED_STATE: {…} case IDLE_STATE: {...} case PRETX_STATE: {...} case SYNC_STATE: {...} case RX_STATE: {...} return SUCCESS; } PreambleHeader (5)Payload (29)CRC (2) Sync

35 Receiving a message (1) file:CC1000RadioIntM.nc async event result_t SpiByteFifo.dataReady(uint8_t data_in) { … switch (RadioState) { … case IDLE_STATE: { if (((data_in == (0xaa)) || (data_in == (0x55)))) { PreambleCount++; if (PreambleCount > CC1K_ValidPrecursor) { PreambleCount = SOFCount = 0; RxBitOffset = RxByteCnt = 0; usRunningCRC = 0; rxlength = MSG_DATA_SIZE-2; RadioState = SYNC_STATE; } } … } PreambleHeader (5)Payload (29)CRC (2) Sync IDLE_STATE  SYNC_STATE  Listen to the preamble, if the enough bytes of preamble are received, entering SYCN_STATE

36 Receiving a message (2) file:CC1000RadioIntM.nc async event result_t SpiByteFifo.dataReady(uint8_t data_in) { … switch (RadioState) { case SYNC_STATE: … { if ( find SYCN_WORD) { … RadioState = RX_STATE; } else if ( too many preamble) { … RadioState = IDLE_STATE; } } … } PreambleHeader (5)Payload (29)CRC (2) Sync SYNC_STATE  RX_STATE  look for a SYNC_WORD (0x33cc).  Save the last received byte and current received byte  Use a bit shift compare to find the byte boundary for the sync byte  Retain the shift value and use it to collect all of the packet data SYNC_STATE  IDLE_STATE  didn't find the SYNC_WORD after a reasonable number of tries, so set the radio state back to idel: RadioState = IDLE_STATE;

37 Receiving a message (3) file:CC1000RadioIntM.nc async event result_t SpiByteFifo.dataReady(uint8_t data_in) { … switch (RadioState) { … case RX_STATE: { …RxByteCnt++; if (RxByteCnt <= rxlength) { usRunningCRC = crcByte(usRunningCRC,Byte); if (RxByteCnt == HEADER_LENGTH_OFFSET) { rxlength = rxbufptr->length;} } else if (RxByteCnt == CRCBYTE_OFFSET) { if (rxbufptr->crc == usRunningCRC) { rxbufptr->crc = 1; } else { rxbufptr->crc = 0; } … RadioState = IDLE_STATE; post PacketRcvd(); } … PreambleHeader (5)Payload (29)CRC (2) Sync RX_STATE  IDLE_STATE/SENDING_ACK  Keep receiving bytes and calculate CRC until the end of the packet.  The end of the packet are specified by the length in the packet header  Pass the message to the application layer, no matter whether the message passed the CRC check

38 Error Detection – CRC CRC – Cyclic Redundancy Check  Polynomial cods or checksums Procedure: 1. Let r be the degree of the code polynomial. Append r zero bits to the end of the transmitted bit string. Call the entire bit string S(x) 2. Divide S(x) by the code polynomial using modulo 2 division. 3. Subtract the remainder from S(x) using modulo 2 subtraction. The result is the checksummed message

39 Generating a CRC – example Message: 1011  1 * x 3 + 0 * x 2 + 1 * x + 1= x 3 + x + 1 Code Polynomial: x 2 + 1 (101) Step 1: Compute S(x) r = 2 S(x) = 101100 Step 2: Modulo 2 divide 1011 101 101100 101 001 000 010 000 100 101 01 Remainder Step 3: Modulo 2 subtract the remainder from S(x) 101100 - 01 101101 Checksummed Message

40 Decoding a CRC – example Procedure 1. Let n be the length of the checksummed message in bits 2. Divide the checksummed message by the code polynomial using modulo 2 division. If the remaidner is zero, there is no error detected. Case 1: 1001 101 101101 101 001 000 010 000 101 00 Remainder = 0 (No error detected) Case 2: 1000 101 101001 101 000 001 000 01 Remainder = 1 (Error detected) Checksummed message (n=6): 101101 1011 Original message

41 CRC in TinyOS Calculate the CRC byte by byte crc=0x0000; while (more bytes) { crc=crc^b<<8; calculate the high byte of crc } Code Polynomial: CRC-CCITT 0x1021 = 0001 0000 0010 0001 x 16 + x 12 + x 5 + 1 file: system/crc.h uint16_t crcByte(uint16_t crc, uint8_t b) { uint8_t i; crc = crc ^ b << 8; i = 8; do if (crc & 0x8000) crc = crc << 1 ^ 0x1021; else crc = crc << 1; while (--i); return crc; } Example: 10… 10001 0000 0010 0001 10110110110110110110110110110100 10001000000100001 01111101100101111 00000000000000000 11111011001011111 …

42 Further Reading Go through the on-line tutorial:  http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html http://www.tinyos.net/tinyos-1.x/doc/tutorial/index.html Search the help archive:  http://www.tinyos.net/search.html http://www.tinyos.net/search.html NesC language reference manual:  http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf Getting started guide  http://www.xbow.com/Support/Support_pdf_files/Getting_Started_Guide.pdf http://www.xbow.com/Support/Support_pdf_files/Getting_Started_Guide.pdf Hardware manual:  http://www.xbow.com/Support/Support_pdf_files/MPR- MIB_Series_Users_Manual.pdf http://www.xbow.com/Support/Support_pdf_files/MPR- MIB_Series_Users_Manual.pdf

43 Reference “Programming TinyOS”, David Culler, Phil Levis, Rob Szewczyk, Joe Polastre University of California, BerkeleyIntel Research Berkeley “TinyOS Tutorial”, Chien-Liang Fok, http://www.princeton.edu/~wolf/EECS579/imotes/tos_tut orial.pdf http://www.princeton.edu/~wolf/EECS579/imotes/tos_tut orial.pdf “Computer Networks”, Badri Nath http://www.cs.rutgers.edu/dataman/552dir/notes/ week2-one.pdf http://www.cs.rutgers.edu/dataman/552dir/notes/ week2-one.pdf


Download ppt "TinyOS Tutorial Communication Networks I Wenyuan Xu Fall 2006."

Similar presentations


Ads by Google