Presentation is loading. Please wait.

Presentation is loading. Please wait.

CSE 370 – Winter 2002 – Logic minimization - 1 Overview zLast lecture yExamples of Karnaugh maps, including Don’t cares zToday yDesign Examples yPrime.

Similar presentations


Presentation on theme: "CSE 370 – Winter 2002 – Logic minimization - 1 Overview zLast lecture yExamples of Karnaugh maps, including Don’t cares zToday yDesign Examples yPrime."— Presentation transcript:

1 CSE 370 – Winter 2002 – Logic minimization - 1 Overview zLast lecture yExamples of Karnaugh maps, including Don’t cares zToday yDesign Examples yPrime implicants and implicants

2 CSE 370 – Winter 2002 – Logic minimization - 2 we'll need a 4-variable Karnaugh map for each of the 3 output functions Design example: two-bit comparator block diagram LT EQ GT A B C D A B C D N1 N2 ABCDLTEQGT 0000010 01100 10100 11100 0100001 01010 10100 11100 1000001 01001 10010 11100 1100001 01001 10001 11010 and truth table

3 CSE 370 – Winter 2002 – Logic minimization - 3 A' B' D + A' C + B' C D B C' D' + A C' + A B D' LT= EQ= GT= K-map for EQK-map for LTK-map for GT Design example: two-bit comparator (cont’d) 0 00100010 00 D A11 010001000 B C 10011001 00 D A00 10011001 B C 010001000 11 D A00 0 00100010 B C = (A xnor C) (B xnor D) LT and GT are similar (flip A/C and B/D) A' B' C' D' + A' B C' D + A B C D + A B' C D’

4 CSE 370 – Winter 2002 – Logic minimization - 4 two alternative implementations of EQ with and without XNOR XNOR is implemented with at least 3 simple gates Design example: two-bit comparator (cont’d)

5 CSE 370 – Winter 2002 – Logic minimization - 5 block diagram and truth table 4-variable K-map for each of the 4 output functions A2A1B2B1P8P4P2P1 00000000 010000 100000 110000 01000000 010001 100010 110011 10000000 010010 100100 110110 11000000 010011 100110 111001 Design example: 2x2-bit multiplier P1 P2 P4 P8 A1 A2 B1 B2

6 CSE 370 – Winter 2002 – Logic minimization - 6 K-map for P8 K-map for P4 K-map for P2K-map for P1 Design example: 2x2-bit multiplier (cont’d) 00 00 B1 A200 011101111 A1 B2 0 00010001 0 00100010 B1 A2 010001000 100010000 A1 B2 00 01 B1 A2 01010101 01100110 A1 B2 00 00 B1 A200 100010000 A1 B2 P8 = A2A1B2B1 P4= A2B2B1' + A2A1'B2 P2= A2'A1B2 + A1B2B1' + A2B2'B1 + A2A1'B1 P1= A1B1 Do we really need it?

7 CSE 370 – Winter 2002 – Logic minimization - 7 I8I4I2I1O8O4O2O1 00000001 00010010 00100011 00110100 01000101 01010110 01100111 01111000 10001001 10010000 1010XXXX 1011XXXX 1100XXXX 1101XXXX 1110XXXX 1111XXXX block diagram and truth table 4-variable K-map for each of the 4 output functions O1 O2 O4 O8 I1 I2 I4 I8 Design example: BCD increment by 1

8 CSE 370 – Winter 2002 – Logic minimization - 8 O8 = I4 I2 I1 + I8 I1' O4 = I4 I2' + I4 I1' + I4’ I2 I1 O2 = I8’ I2’ I1 + I2 I1' O1 = I1' O8 O4 O2 O1 Design example: BCD increment by 1 (cont’d) 00 X1X0X1X0 I1 I8 010001000 XX I4 I2 01 X0X0X0X0 I1 I801 XX I4 I2 01010101 X0X0X0X0 I1 I8 10011001 XX I4 I2 10 X1X0X1X0 I1 I801 XX I4 I2

9 CSE 370 – Winter 2002 – Logic minimization - 9 Definition of terms for two-level simplification zImplicant ysingle element of ON-set or DC-set or any group of these elements that can be combined to form a subcube zPrime implicant yimplicant that can't be combined with another to form a larger subcube zEssential prime implicant yprime implicant is essential if it alone covers an element of ON-set ywill participate in ALL possible covers of the ON-set yDC-set used to form prime implicants but not to make implicant essential zObjective: ygrow implicant into prime implicants (minimize literals per term) ycover the ON-set with as few prime implicants as possible (minimize number of product terms)

10 CSE 370 – Winter 2002 – Logic minimization - 10 0X110X111 10101010 D A 100010000 11 B C 5 prime implicants: BD, ABC', ACD, A'BC, A'C'D Examples to illustrate terms 01 10101010 D A 01010101 10 B C 6 prime implicants: A'B'D, BC', AC, A'C'D, AB, B'CD minimum cover: AC + BC' + A'B'D essential minimum cover: 4 essential implicants essential

11 CSE 370 – Winter 2002 – Logic minimization - 11 Algorithm for two-level simplification zAlgorithm: minimum sum-of-products expression from a Karnaugh map yStep 1: choose an element of the ON-set yStep 2: find "maximal" groupings of 1s and Xs adjacent to that element xconsider top/bottom row, left/right column, and corner adjacencies xthis forms prime implicants (number of elements always a power of 2) yRepeat Steps 1 and 2 to find all prime implicants yStep 3: revisit the 1s in the K-map xif covered by single prime implicant, it is essential, and participates in final cover x1s covered by essential prime implicant do not need to be revisited yStep 4: if there remain 1s not covered by essential prime implicants xselect the smallest number of prime implicants that cover the remaining 1s

12 CSE 370 – Winter 2002 – Logic minimization - 12 X101X101 011101111 D A 0X010X01 X001X001 B C 3 primes around AB'C'D' Algorithm for two-level simplification (example) X101X101 011101111 D A 0X010X01 X001X001 B C 2 primes around A'BC'D' X101X101 011101111 D A 0X010X01 X001X001 B C 2 primes around ABC'D X101X101 011101111 D A 0X010X01 X001X001 B C minimum cover (3 primes) X101X101 011101111 D A 0X010X01 X001X001 B C X101X101 011101111 D A 0X010X01 X001X001 B C 2 essential primes X101X101 011101111 D A 0X010X01 X001X001 B C

13 CSE 370 – Winter 2002 – Logic minimization - 13 Combinational logic summary zLogic functions, truth tables, and switches yNOT, AND, OR, NAND, NOR, XOR,..., minimal set zAxioms and theorems of Boolean algebra yproofs by re-writing and perfect induction zGate logic ynetworks of Boolean functions and their time behavior zCanonical forms ytwo-level and incompletely specified functions zSimplification ytwo-level simplification zLater yautomation of simplification ymulti-level logic ydesign case studies ytime behavior


Download ppt "CSE 370 – Winter 2002 – Logic minimization - 1 Overview zLast lecture yExamples of Karnaugh maps, including Don’t cares zToday yDesign Examples yPrime."

Similar presentations


Ads by Google