Presentation is loading. Please wait.

Presentation is loading. Please wait.

Metabolic Control Theory and the genetics and evolution of metabolic fluxes Christine Dillmann, Julie Fievet, Sébastien Lion, Frédéric Gabriel, Grégoire.

Similar presentations


Presentation on theme: "Metabolic Control Theory and the genetics and evolution of metabolic fluxes Christine Dillmann, Julie Fievet, Sébastien Lion, Frédéric Gabriel, Grégoire."— Presentation transcript:

1 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
Christine Dillmann, Julie Fievet, Sébastien Lion, Frédéric Gabriel, Grégoire Talbot, Delphine Sicard, Dominique de Vienne UMR de Génétique Végétale, INRA/UPS/CNRS/INA PG Ferme du Moulon, Gif-sur-Yvette, France

2 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype - Experimental validation of the Metabolic Control Theory - The metabolic bases of dominance and heterosis - Evolution of enzyme concentrations in natural populations

3 « Quantitative » genetics
Quantitative traits Most phenotypic traits … Growth rate, flowering date, fruit pH, behaviour traits, morphological traits, blood pressure, metabolic flux, enzyme activity, mRNA/protein concentrations, etc. … Display a continuous variation within populations :

4 « Recherche sur les hybrides d’autres plantes »
G. J. Mendel, 1865 AaBb aaBB AAbb 1 2 3 4 5 6 N Number of «Capital letter » alleles Aabb aaBb A B a b x F2 AABb AaBB aabb AABB Continuous variation can be maintained by independent segregation of multiple factors. George Udny Yule, 1902.

5 The metabolic fluxes as model quantitative traits
E E Ej En X0 S1 … Sj1 Sj … Xn Enzymes The “genotype” : all the genes that determine enzyme activities (concentrations and kinetic parameters, genetically variable) The “phenotype” : the flux Kacser H. and Burns J.A., The molecular basis of dominance. Genetics, 97,

6 Stationary phase : v1 = v2 = … = vj = … = vn = J
Metabolic control theory (1) E1 E2 Ej Ej+1 En Sn-1 Sj S1 S0 Sn En-1 Michaelis-Menten enzymes Stationary phase : v1 = v2 = … = vj = … = vn = J Enzymes far from saturation Enzyme concentrations are independent Kacser and Burns, 1973 Heinrich and Rappoport, 1974

7 At stationary phase : v1 = v2 = … = vj = … = vn = J
Metabolic control theory (2) E1 E2 Ej Ej+1 En Sn-1 Sj S1 S0 Sn En-1 At stationary phase : v1 = v2 = … = vj = … = vn = J Kacser and Burns, 1973 Heinrich and Rappoport, 1974

8 Metabolic control theory (3) : genetically variable parameters
Enzyme efficiency : Ej = Aj Qj Aj Kinetic parameters : Qj Enzyme cellular concentration

9 Genetic variability of kinetic parameters
- Few in vivo data - Slightly variable Wang & Dykhuisen, Pathway of gluconate metabolism in E. coli. Evolution, 55:897.

10 Number of molecules per cell
fba1 IPG SDS Genetic variability of enzyme concentrations - Highly variables Number of molecules per cell Fiévet et al, 2004

11 Relationship between enzymes and flux : independent enzymes
Jmax n enzymes Flux J 1 enzyme Qj or Aj or Ej = Qj x Aj non linear relationship between the flux and the concentration of on enzyme of the pathway the flux tends asymptotically towards a maximum which depends on the concentrations of all the enzymes of the pathway

12 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype - Experimental validation of the Metabolic Control Theory - The metabolic bases of dominance and heterosis - Evolution of enzyme concentrations in natural populations

13 Experimental validation : in vivo
Kacser and Burns, Genetics 97:639

14 Relationship RubisCO-photosynthesis
A typical example: dependence of carbon assimilation flux on rubisco levels in transgenic tobacco plants. Laurer et al, Planta (1993).

15 Experimental validation : in vitro
First part of glycolysis glucose fructose 1,6 bisP GAP DHAP glycérol 3 P NADH NAD+ GPI FBA TPI Créatine-P + ADP Créatine + ATP Créatine kinase ATP ADP PFK1 HK glucose 6 P fructose 6 P Temps Concentration du NADH Etat stationnaire Julie Fievet et Gilles Curien

16 One tube  one «genotype»
Mixing enzymes, substrates, cofactors Enzymes HXK+PGI+PFK+ FBA+TPI+G3DH+CK Substrates Glucose+ Creatine P+ NADH+ buffer ATP One tube  one «genotype»

17 Experimental validation
Each enzyme vary at a turn, the other being kept constant = Titration curves HXK concentration (µM) non linear relationship between the flux and the concentration of on enzyme of the pathway the flux tends asymptotically towards a maximum which depends ont the concentrations of all the enzymes of the pathway

18 Estimation of kinetic parameters : explicit modelling
Complex equations Many parameters

19 Estimation of kinetic parameters : MCT-based modelling
Ai composite activity parameter pi dispensability The maximum value for the flux is estimated from titration curves : pi=0 Jmax pi≠0 J0

20 Predicting the flux Fievet et al, submitted
Qref Jmax J0 Spi SAi hxk 0,1 18,24 379,93 pgi 0,15 13,27 520,5 pfk 0,29 17,87 107,02 fba 1,54 18,54 tpi 0,84 12,61 10,46 61,35 59,79 Activity parameters are estimated “in systemo”. They are different from what can be estimated on isolated enzymes The global equation can be used to predict the flux for other enzyme concentrations : Fievet et al, submitted

21 Flux measured in vitro (µM/s)
Testing the predictor for the flux on 122 genotubes r = 0,94 Flux measured in vitro (µM/s) Predicted flux (µM/s) Fievet et al, submitted

22 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
(1) Based on MCT, we validated a simple model which describes the relationship between flux and enzyme concentrations (2) Composite kinetic parameters can be estimated « in vivo » from titration curves (3) It should also work for more complex networks like … S1 S2 S3 S4 S5 S6 S7 S8 E1 E2 E3 E5 E4 E6 E7 E8 E9 E10 … with one stable stationary state

23 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype - Experimental validation of the Metabolic Control Theory - The metabolic bases of dominance and heterosis - Evolution of enzyme concentrations in natural populations

24 Genetical consequences of ~hyperbolic relationships : dominance
Three observations - Most deleterious mutations are recessive - There is ~ additivity between highly deleterious mutations - There is ~ additivity between slightly deleterious mutations

25 Two hypothesis to explain dominance
- R. A. Fisher (1928, 1931, 1958) : «modifiers» of dominance relationship between alleles arise due to natural selection - S. Wright (1934) : dominance can be explained by the non linear genotype-phenotype relationship.

26 Dominance : Fisher’s model does not work
Population genetics models : mutations are eliminated before they become recessive. Mutations in Chlamydomonas reinhardtii (Orr, 1991).

27 Dominance : Fisher’s model does not work
Recessive mutations occur in Chlamydomonas as frequently as in drosophila

28 Dominance : S. Wright was right
Ei Flux A1A1 A1A2 A2A2 Ei Flux Weak dominance Kacser H. and Burns J.A., The molecular basis of dominance. Genetics, 97,

29 E. Coli - Dykhuisen et al., 1987, Genetics, 115, 25
Généralisation : several variables enzymes E. Coli - Dykhuisen et al., 1987, Genetics, 115, 25 Flux

30 Generalization : metabolic model for heterosis
Huître P1 Homozygous line Maïs F1 hybrid Increased vigor F1 > (P1 ,P2 ) P2 i ii iii hybrid Levure

31 Metabolic heterosis due to dominance at different loci
Ej Ei Line 1 x Line 2 Hybrid F1 J Ej Ei

32 Heterosis in vitro Fievet et al, in prep JP2 JP1 Simulations Flux
Tube1 Tube 2 Tube (1+2)/2 JP1 JP2 Flux Simulations Fievet et al, in prep

33 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
(4) Dominance and heterosis arise as emergent properties of metabolic systems (5) Heterosis can be explained by antagonistic epistatic relationships between enzymes

34 Metabolic Control Theory and the genetics and evolution of metabolic fluxes
- Metabolic fluxes as model quantitative traits and the relationship between genotype and phenotype - Experimental validation of the Metabolic Control Theory - The metabolic bases of dominance and heterosis - Evolution of enzyme concentrations in natural populations

35 Evolution of enzyme concentration under selection for increasing the flux
W= Monte-Carlo simulations Analytical predictions Natural selection shapes the sharing out of the control of the flux Talbot et al, in prep

36 Dominique de Vienne Bruno Bost Julie Fiévet Frédéric Gabriel Sébastien Lion Delphine Sicard Grégoire Talbot Gilles Curien Olivier Martin

37 Heterosis and epistasis
A substitution at one locus changes the effects of a substitution at another locus The effect of a substituion depends on the genetic background Flux EA2 EB2 EA1 EB1

38 Heterosis and epistasis
Synergistic epistasis in tryptophane metabolic pathway Tryptophane flux Niederberger et al., 1992, Biochem. J. 287, 473.

39 Heterosis and epistasis
Jhyb J J H = Heterosis index Antagonistic Synergistic Epistasis index Additivity I = 1 Fievet et al, in prep

40 Autres axes de recherche
1- Les concentrations des enzymes ne sont pas nécessairement indépendantes Corrélations physiologiques, positives ou négatives La concentration d’enzymes allouée à une chaîne est nécessairement finie ( « compétition »  corrélations négatives)  Matrice n x n des Ej/Ei  Etotal fixé, ou fonction de coût

41 Autres axes de recherche
2- Comment agit la sélection pour maximiser/optimiser un flux ? J Ej Red curve: No co-regulation Blue curves: Co-regulations - Evolution des flux avec ou sans contraintes sur les concentrations d’enzymes. - Approche expérimentale : variabilité des paramètres enzymatiques et évolution expérimentale chez la levure (modèle : glycolyse)


Download ppt "Metabolic Control Theory and the genetics and evolution of metabolic fluxes Christine Dillmann, Julie Fievet, Sébastien Lion, Frédéric Gabriel, Grégoire."

Similar presentations


Ads by Google