Download presentation
Presentation is loading. Please wait.
1
Prestack Migration Deconvolution Jianxing Hu and Gerard T. Schuster University of Utah
2
Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
3
Comparison of Poststack MD Depth Slices 6 8 Y (km) Y (km) X (km) X (km)4 8 6 10 10 Kirchhoff Image Kirchhoff Image MD Image MD Image 6 8 Y (km) Y (km) X (km) X (km)4 8 6 10 10
4
Comparison of Prestack Migration and MD Images X (km) X (km) 4 6 8 10 10 1 4 Depth (km) Depth (km) X (km) X (km) 4 6 8 10 10 1 4 Depth (km) Depth (km) Prestack Kirchhoff Migration Image of Prestack Kirchhoff Migration Image of a North Sea Data Set a North Sea Data Set MD Image
5
Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
6
Modeling and Migration Seismic data Reflectivity Green’s Function Model Space Migrated Image Data Space Seismic Data Forward Modeling: Migration: Wavelet
7
Model Space Where: Denote as the migration Green’s Function Relation of Migrated Image and Reflectivity Distribution Relation of Migrated Image and Reflectivity Distribution Data Space
8
Reflectivity Modulated by Migration Green’s Function Model Space
9
Migration Deconvolution Model Space Model Space --- reference position of migration Green’s function
10
Lateral Velocity Variation Multi-Reference migration Green’s function Subdivide the migration image area and use multi- reference migration Green’s function to account for lateral velocity variation and far-field artifacts
11
Methodology Calculate migration Green’s function Recording geometry & migrated image dimension Velocity Model + Traveltime Table Migration Green’s function
12
Methodology Apply migration deconvolution filter to the stacked prestack migration image 5 Offset(km) 6 5 1 2 3 Depth (km) RTM Migration Image Deconvolved Image Deconvolved Image Pseudo-Convolution Offset(km) 6 5 1 2 3 Depth (km) RTM
13
Difference between Poststack MD and Prestack MD Zero-offset trace location & migrated image dimension Velocity Model Traveltime Table migration Poststack migration Green’s function Green’s function + migration Prestack migration Green’s function Green’s function Recording Geometry & migrated image dimension +
14
Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
15
Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
16
5 X 5 Sources; 21 X 21 Receivers (0, 0) (1km, 0) (1km, 1km) (0, 1km) Point scatterer Recording Geometry Wavelet frequency 50 Hz
17
Prestack KM vs. Prestack MD Y X Y X Y X Y X
18
Prestack KM vs. Poststack MD Y X Y X Y X Y X
19
Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
20
(0, 0) (1 km, 0) (1 km,1 km) (0, 1 km) A river channel Recording Geometry 5 X 5 Sources; 21 X 21 Receivers Wavelet frequency 50 Hz
21
Meandering River Model 01000 X (m) 0 1000 Y (m)
22
Kirchhoff Migration Image 01000 X (m) 0 1000 Y (m)
23
MD Image 01000 X (m) 0 1000 Y (m)
24
Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
25
Prestack Migration Image Prestack Migration Image Deconvolved Migration Image Deconvolved Migration Image 0 km 20 km 20 km 0 km 4 km 20 km 0 km 0 km 0 km 4 km X(km) Depth (km)
26
Zoom View of KM and MD Prestack KM Prestack MD 2 4 3 Depth (km) 37 X (km) 2 4 3 Depth (km) 37 X (km)
27
Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
28
Husky Prestack Migration Image 4 6X(km)0 0 10 5 2 Depth (km)
29
Velocity Model for Husky Data 6X(km)0 0 10 5 2 Depth (km) 7000 3200 Velocity (m/s)
30
MD with 20 reference positions 6X(km)0 0 10 5 2 Depth (km) A
31
KM X(km) 95 1 3 Depth (km) MD X(km)95 1 3 Depth (km)
32
MD with 20 reference positions 6X(km)0 0 10 5 2 Depth (km) B
33
KM X(km) 1411 1 3 Depth (km) MD X(km)1411 1 3 Depth (km)
34
MD with 20 reference positions 6X(km)0 0 10 5 2 Depth (km) C
35
KM X(km)1410 2 5 Depth (km) MD X(km)1410 2 5 Depth (km)
36
Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set2-D Husky data set 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
37
KM Inline (97,Y) Section MD Inline (97,Y) Section 58 Y (km) 58 0 4 2 04 2 Depth (km)
38
KM Crossline (X,97) Section MD Crossline (X,97) Section 04 2 Depth (km) 118 X (km) 118 X (km) 04 2
39
Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set2-D Husky data set 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
40
KMMD03 X(kft)46 8 Depth (kft) 4 6 8 03 X(kft)
41
46 8 Depth (kft) KMMD4 6 8 X(kft)2 4 2 4
42
Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
43
Conclusions Works well on 2-D land and 3-D synthetic marine prestack data More work is needed to remedy the problems in MD for 3-D land prestack data Standard post-migration processing procedure ?
44
Acknowledgement Thank 1999 UTAM sponsors for their financial supportThank 1999 UTAM sponsors for their financial support
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.