Download presentation
Presentation is loading. Please wait.
1
Linear statistical models 2009 Models for continuous, binary and binomial responses Simple linear models regarded as special cases of GLMs Simple linear regression One-way ANOVA Two-way ANOVA with or without interaction effects Some useful continuous distributions Binary and binomial responses
2
Linear statistical models 2009 A simple linear regression model
3
Linear statistical models 2009 GENMOD implementation of simple linear regression proc genmod data=linear.heartrate; model heart_rate = temp /dist=normal link=identity; run; Analysis of Parameter Estimates Standard Wald 95% Confidence Chi- Parameter DF Estimate Error Limits Square Pr > ChiSq Intercept 1 2.1389 1.6906 -1.1746 5.4524 1.60 0.2058 Temp 1 1.7750 0.1502 1.4806 2.0694 139.63 <.0001 Scale 1 2.3271 0.5485 1.4662 3.6936 NOTE: The scale parameter was estimated by maximum likelihood.
4
Linear statistical models 2009 Comparison of GENMOD and MINITAB’s simple linear regression GENMOD Analysis of Parameter Estimates Standard Wald 95% Confidence Chi- Parameter DF Estimate Error Limits Square Pr > ChiSq Intercept 1 2.1389 1.6906 -1.1746 5.4524 1.60 0.2058 Temp 1 1.7750 0.1502 1.4806 2.0694 139.63 <.0001 Scale 1 2.3271 0.5485 1.4662 3.6936 NOTE: The scale parameter was estimated by maximum likelihood. MINITAB Regression Analysis: Heart_rate versus Temp The regression equation is Heart_rate = 2.14 + 1.77 Temp Predictor Coef SE Coef T P Constant 2.139 1.917 1.12 0.301 Temp 1.7750 0.1703 10.42 0.000 S = 2.63869 R-Sq = 93.9% R-Sq(adj) = 93.1%
5
Linear statistical models 2009 Comparison of GENMOD and MINITAB’s simple linear regression The point estimates of the fitted line are identical The deviance in GENMOD is equal to the error sum of squares The estimates of the standard deviation are different The Wald-tests and the t-tests are different
6
Linear statistical models 2009 One-way ANOVA Measurement of hardness for nine groups of samples (3 levels of Zr, 3 temperature levels)
7
Linear statistical models 2009 GENMOD implementation of one-way ANOVA proc genmod data=linear.hardness; class zr_content temperature sample; model hardness_Gpa = sample /dist=normal link=identity; run; Analysis Of Parameter Estimates Standard Wald 95% Confidence Chi- Parameter DF Estimate Error Limits Square Pr > ChiSq Intercept 1 35.9016 0.4357 35.0476 36.7555 6789.78 <.0001 Sample 1 1 -6.8011 0.6130 -8.0024 -5.5997 123.11 <.0001 Sample 2 1 -6.8303 0.6195 -8.0446 -5.6161 121.56 <.0001 Sample 3 1 -8.1457 0.6130 -9.3471 -6.9443 176.61 <.0001 Sample 4 1 -13.4144 0.6195 -14.6286 -12.2002 468.86 <.0001 Sample 5 1 -8.6257 0.4800 -9.5665 -7.6850 322.95 <.0001 Sample 6 1 -10.4443 0.6099 -11.6396 -9.2490 293.30 <.0001 Sample 7 1 -8.5459 0.6162 -9.7535 -7.3382 192.36 <.0001 Sample 8 1 -3.1868 0.6565 -4.4735 -1.9001 23.56 <.0001 Sample 9 0 0.0000 0.0000 0.0000 0.0000.. Scale 1 2.9870 0.0871 2.8211 3.1627 NOTE: The scale parameter was estimated by maximum likelihood.
8
Linear statistical models 2009 GENMOD implementation of one-way ANOVA Standard Wald 95% Confidence Chi- GENMOD Parameter DF Estimate Error Limits Square Pr > ChiSq Intercept 1 35.9016 0.4357 35.0476 36.7555 6789.78 <.0001 Sample 1 1 -6.8011 0.6130 -8.0024 -5.5997 123.11 <.0001 Sample 2 1 -6.8303 0.6195 -8.0446 -5.6161 121.56 <.0001 Sample 3 1 -8.1457 0.6130 -9.3471 -6.9443 176.61 <.0001 Sample 4 1 -13.4144 0.6195 -14.6286 -12.2002 468.86 <.0001 Sample 5 1 -8.6257 0.4800 -9.5665 -7.6850 322.95 <.0001 Sample 6 1 -10.4443 0.6099 -11.6396 -9.2490 293.30 <.0001 Sample 7 1 -8.5459 0.6162 -9.7535 -7.3382 192.36 <.0001 Sample 8 1 -3.1868 0.6565 -4.4735 -1.9001 23.56 <.0001 Sample 9 0 0.0000 0.0000 0.0000 0.0000.. Scale 1 2.9870 0.0871 2.8211 3.1627 MINTAB ANOVA Pooled StDev Level N Mean StDev ------+---------+---------+---------+--- 1 48 29.100 2.770 (-*-) 2 46 29.071 2.605 (--*-) 3 48 27.756 1.777 (-*--) 4 46 22.487 2.842 (-*-) 5 220 27.276 2.699 (*) 6 49 25.457 3.385 (-*-) 7 47 27.356 4.465 (-*--) 8 37 32.715 3.815 (--*-) 9 47 35.902 3.236 (-*-) ------+---------+---------+---------+--- 24.0 28.0 32.0 36.0 Pooled StDev = 3.010
9
Linear statistical models 2009 GENMOD implementation of two-way ANOVA proc genmod data=linear.hardness; class zr_content temperature sample; model hardness_Gpa = zr_content temperature zr_content * temperature/dist=normal link=identity; run; Analysis Of Parameter Estimates Standard Wald 95% Confidence Chi- Parameter DF Estimate Error Limits Square Pr > ChiSq Intercept 1 27.7559 0.4311 26.9108 28.6009 4144.59 <.0001 Zr_content 0.17 1 8.1457 0.6130 6.9443 9.3471 176.61 <.0001 Zr_content 0.5 1 -2.2986 0.6066 -3.4875 -1.1097 14.36 0.0002 Zr_content 1 0 0.0000 0.0000 0.0000 0.0000.. Temperature 400 1 1.3446 0.6097 0.1496 2.5397 4.86 0.0274 Temperature 800 1 1.3154 0.6163 0.1074 2.5233 4.56 0.0328 Temperature 1000 0 0.0000 0.0000 0.0000 0.0000.. Zr_conten*Temperatur 0.17 400 1 -9.8905 0.8668 -11.5895 -8.1915 130.18 <.0001 Zr_conten*Temperatur 0.17 800 1 -4.5022 0.9004 -6.2670 -2.7373 25.00 <.0001 Zr_conten*Temperatur 0.17 1000 0 0.0000 0.0000 0.0000 0.0000.. Zr_conten*Temperatur 0.5 400 1 -4.3147 0.8648 -6.0096 -2.6199 24.90 <.0001 Zr_conten*Temperatur 0.5 800 1 0.5032 0.7762 -1.0181 2.0245 0.42 0.5168 Zr_conten*Temperatur 0.5 1000 0 0.0000 0.0000 0.0000 0.0000.. Zr_conten*Temperatur 1 400 0 0.0000 0.0000 0.0000 0.0000.. Zr_conten*Temperatur 1 800 0 0.0000 0.0000 0.0000 0.0000.. Zr_conten*Temperatur 1 1000 0 0.0000 0.0000 0.0000 0.0000.. Scale 1 2.9870 0.0871 2.8211 3.1627
10
Linear statistical models 2009 The gamma distribution Expected value: Variance: 2
11
Linear statistical models 2009 The 2 distribution Expected value: p Variance: 2p Special case of gamma distribution Sum of independent squared standard normal distributions
12
Linear statistical models 2009 A model of the mean of a gamma distribution proc genmod data=linear.clottingtime; model clotting_time = lconc agent lconc * agent/dist=gamma link=power(-1) residuals; output out=linear.clottingout resdev=resdev pred=pred; run;
13
Linear statistical models 2009 Binary and binomial responses The response probabilities are modelled as functions of the predictors Link functions: the probit link: the logit link: the log-log link:
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.