Download presentation
Presentation is loading. Please wait.
1
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu
2
Max Metlitski, Harvard HARVARD arXiv:1001.1153 Eun Gook Moon, Harvard
3
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
4
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
5
The cuprate superconductors
6
Ground state has long-range Néel order Square lattice antiferromagnet
7
TlCuCl 3
8
An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.
9
Ground state has long-range Néel order Square lattice antiferromagnet
10
J J/ Weaken some bonds to induce spin entanglement in a new quantum phase
11
Square lattice antiferromagnet J J/ Ground state is a “quantum paramagnet” with spins locked in valence bond singlets
12
Pressure in TlCuCl 3
13
Quantum critical point with non-local entanglement in spin wavefunction
14
CFT3
20
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). TlCuCl 3 at ambient pressure
21
N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001). Sharp spin 1 particle excitation above an energy gap (spin gap) TlCuCl 3 at ambient pressure
23
Spin waves
26
Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008) TlCuCl 3 with varying pressure
27
Prediction of quantum field theory
29
S. Sachdev, arXiv:0901.4103
30
CFT3
31
Pressure in TlCuCl 3 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
32
CFT3 at T>0 Pressure in TlCuCl 3 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
33
CFT3 at T>0 Pressure in TlCuCl 3 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992).
34
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
35
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
36
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface
37
Strange Metal
38
Quantum criticality of Pomeranchuk instability x y
39
x y
40
x y
41
Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)
42
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor R. DaouR. Daou, J. Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberte, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang,g, DavidOlivier Cyr-Cis Laliberte, NicolasRamshaw, Ruixing D. A. Bonn, W. N. Hardy, and Louis Taillefer W. N. Hardy, and Lou Nature, 463, 519 (2010)., 519 (2010).
44
Quantum criticality of Pomeranchuk instability x y
45
x y
47
Quantum critical T I-n
48
Quantum criticality of Pomeranchuk instability Quantum critical T I-n Strange Metal ?
55
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
56
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
57
e.g. Graphene at zero bias
59
e.g. Graphene at non-zero bias
60
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions Maldacena, Gubser, Klebanov, Polyakov, Witten 3+1 dimensional AdS space
61
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions Maldacena, Gubser, Klebanov, Polyakov, Witten 3+1 dimensional AdS space A 2+1 dimensional system at its quantum critical point
62
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions Maldacena, Gubser, Klebanov, Polyakov, Witten 3+1 dimensional AdS space Quantum criticality in 2+1 dimensions Black hole temperature = temperature of quantum criticality
63
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions Strominger, Vafa 3+1 dimensional AdS space Quantum criticality in 2+1 dimensions Black hole entropy = entropy of quantum criticality
64
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space Quantum criticality in 2+1 dimensions Quantum critical dynamics = waves in curved space Maldacena, Gubser, Klebanov, Polyakov, Witten
65
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space Quantum criticality in 2+1 dimensions Friction of quantum criticality = waves falling into black hole Kovtun, Policastro, Son
66
AdS/CFT correspondence The quantum theory of a black hole in a 3+1- dimensional negatively curved AdS universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional AdS space Quantum criticality in 2+1 dimensions Friction of quantum criticality = waves falling into black hole Kovtun, Policastro, Son
68
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788 Examine free energy and Green’s function of a probe particle
69
Short time behavior depends upon conformal AdS 4 geometry near boundary T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
70
Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
71
Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788
72
J. McGreevy, arXiv0909.0518
73
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 Infrared physics of Fermi surface is linked to the near horizon AdS 2 geometry of Reissner-Nordstrom black hole
74
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 AdS 4 Geometric interpretation of RG flow
75
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 AdS 2 x R 2 Geometric interpretation of RG flow
76
Green’s function of a fermion T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694 See also S.-S. Lee, Phys. Rev. D 79, 086006 (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009);F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80, 126016 (2009)
77
Green’s function of a fermion Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
78
Green’s function of a fermion Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
79
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
80
1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The AdS/CFT correspondence Phases of finite density quantum matter at strong coupling 4. Phase diagram of the cuprates Quantum criticality of the competition between antiferromagnetism and superconductivity Outline
81
Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal
82
Antiferro- magnetism Fermi surface d-wave supercon- ductivity
83
Antiferro- magnetism Fermi surface d-wave supercon- ductivity
84
Pressure in TlCuCl 3 Christian Ruegg et al., Phys. Rev. Lett. 100, 205701 (2008) S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). Canonical quantum critical phase diagram of coupled-dimer antiferromagnet
85
Antiferro- magnetism Fermi surface d-wave supercon- ductivity
86
Antiferro- magnetism Fermi surface d-wave supercon- ductivity
87
Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +
88
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates
89
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates
90
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Hot spots
91
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots
92
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hot spots
93
Theory of quantum criticality in the cuprates T*T*
94
Antiferro- magnetism Fermi surface d-wave supercon- ductivity
95
Antiferro- magnetism Fermi surface d-wave supercon- ductivity
96
Theory of quantum criticality in the cuprates
100
Criticality of the coupled dimer antiferromagnet at x=x s
101
Theory of quantum criticality in the cuprates Criticality of the topological change in Fermi surface at x=x m
102
Theory of quantum criticality in the cuprates
104
Similar phase diagram for the pnictides Ishida, Nakai, and Hosono arXiv:0906.2045v1 S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:0911.3136.
105
H c2 T*T*
106
G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223 Similar phase diagram for CeRhIn 5
107
Identified quantum criticality in cuprate superconductors with a critical point at optimal doping associated with onset of spin density wave order in a metal Conclusions Elusive optimal doping quantum critical point has been “hiding in plain sight”. It is shifted to lower doping by the onset of superconductivity
108
Conclusions Theories for the onset of spin density wave and Ising- nematic order in metals are strongly coupled in two dimensions
109
The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.