Download presentation
Presentation is loading. Please wait.
1
The Fourier Transform Jean Baptiste Joseph Fourier
2
Original histogramEqualized histogram Image Operations in Different Domains 1) Gray value (histogram) domain 2) Spatial (image) domain 3) Frequency (Fourier) domain - Histogram stretching, equalization, specification, etc... - Average filter, median filter, gradient, laplacian, etc… Original imageGradient magnitude Blurry ImageLaplacian += Sharpened Image Noisy image (Salt & Pepper noise) 3 X 3 Average5 X 5 Average 7 X 7 AverageMedian
3
= 3 sin(x) A + 1 sin(3x) B A+B + 0.8 sin(5x) C A+B+C + 0.4 sin(7x)D A+B+C+D A sum of sines and cosines sin(x) A
4
Higher frequencies due to sharp image variations (e.g., edges, noise, etc.)
5
The Continuous Fourier Transform
6
Complex Numbers Real Imaginary Z=(a,b) a b |Z|
7
x – The wavelength is 1/u. – The frequency is u. 1 The 1D Basis Functions 1/u
8
The Fourier Transform 1D Continuous Fourier Transform: The Inverse Fourier Transform The Continuous Fourier Transform 2D Continuous Fourier Transform: The Inverse Transform The Transform
9
The wavelength is. The direction is u/v. The 2D Basis Functions u=0, v=0 u=1, v=0u=2, v=0 u=-2, v=0u=-1, v=0 u=0, v=1u=1, v=1u=2, v=1 u=-2, v=1u=-1, v=1 u=0, v=2u=1, v=2u=2, v=2 u=-2, v=2u=-1, v=2 u=0, v=-1u=1, v=-1u=2, v=-1 u=-2, v=-1u=-1, v=-1 u=0, v=-2u=1, v=-2u=2, v=-2 u=-2, v=-2u=-1, v=-2 U V
10
Discrete Functions 0 1 2 3... N-1 f(x) f(x 0 ) f(x 0 + x) f(x 0 +2 x) f(x 0 +3 x) f(n) = f(x 0 + n x) x0x0 x0+xx0+x x 0 +2 xx 0 +3 x The discrete function f: { f(0), f(1), f(2), …, f(N-1) }
11
(u = 0,..., N-1) (x = 0,..., N-1) 1D Discrete Fourier Transform: The Discrete Fourier Transform 2D Discrete Fourier Transform: (x = 0,..., N-1; y = 0,…,M-1) (u = 0,..., N-1; v = 0,…,M-1)
12
Fourier spectrum log(1 + |F(u,v)|) Image f The Fourier Image Fourier spectrum |F(u,v)|
13
Frequency Bands Percentage of image power enclosed in circles (small to large) : 90%, 95%, 98%, 99%, 99.5%, 99.9% ImageFourier Spectrum
14
Low pass Filtering 90% 95% 98% 99% 99.5% 99.9%
15
Noise Removal Noisy image Fourier Spectrum Noise-cleaned image
16
Noise Removal Noisy imageFourier SpectrumNoise-cleaned image
17
High Pass Filtering OriginalHigh Pass Filtered
18
High Frequency Emphasis + OriginalHigh Pass Filtered
19
High Frequency Emphasis OriginalHigh Frequency Emphasis Original High Frequency Emphasis
20
OriginalHigh pass Filter High Frequency Emphasis High Frequency Emphasis + Histogram Equalization High Frequency Emphasis
21
2D Image2D Image - Rotated Fourier Spectrum Rotation
22
Image Domain Frequency Domain Fourier Transform -- Examples
23
Image Fourier spectrum Fourier Transform -- Examples
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.