Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 OOAD Detailed Design From Design to Implementation ITV Modelbased Analysis and Design of Embedded Software Anders P. Ravn & Arne Skou Aalborg University.

Similar presentations


Presentation on theme: "1 OOAD Detailed Design From Design to Implementation ITV Modelbased Analysis and Design of Embedded Software Anders P. Ravn & Arne Skou Aalborg University."— Presentation transcript:

1 1 OOAD Detailed Design From Design to Implementation ITV Modelbased Analysis and Design of Embedded Software Anders P. Ravn & Arne Skou Aalborg University February 2011

2 2 Purpose Give meaning to UML diagrams Link design to programs Diagrams: Class Diagrams with associations and dependencies State Diagrams with events and actions

3 3 Basis from Design Architecture Detailed Design for Model Detailed Design for Functions Detailed Design for Interface We revisit the Architecture when we talk about Process Design

4 4 Architecture: Simple Layered System «component» Interface «component» Functions «component» Model ”Interface” knows ”Functions”, not the converse ”Interface” to Problem DomainProblem Domain ”Data” Application Domain ”functions”

5 5 Simple Generic Architecture «component» Interface «component» Model «component» UserInterface «component» SystemInterface «component» Platform «component» OS «component» FileSystem «component» Function...

6 6 A variation: Layer access via aggregation

7 7 A variation: Layer access via generalization

8 8 Strategy Pattern Context State s «abstract» Strategy operation(State) Function 1 functions * 1 Function n...

9 9 Observer Pattern «abstract» Subject attach(Observer) detach(Observer) notify() get(Object) Model State s get(State) «abstract» Observer update() ModelObserver State observed observers 1* subject

10 10 Simple Generic Architecture «component» Interface «component» Model «component» UserInterface «component» SystemInterface «component» Platform «component» OS «component» FileSystem «component» Function...

11 11 Class implementation class C { public: char a; public: C(); // constructor ~C(); // destructor }

12 12 Auto implementation (c.h file) //## class c class c { //// Constructors and destructors //// public : //## auto_generated c(); ~c(); //// Additional operations //// public : //## auto_generated char getA() const; void setA(char p_a); //// Attributes //// protected : char a;//## attribute a };

13 13 Auto implementation (c.cpp file) #include "c.h" //## class c c::c() { } c::~c() { } void c::setA(char p_a) { a = p_a; } char c::getA() const { return a; }

14 14 Class method

15 15 Auto implementation (c.h file) //## class c class c { //// Constructors and destructors //// public : //## auto_generated c(); ~c(); public : //## operation method(char) int method(char x); //// Additional operations //// public : //## auto_generated char getA() const; void setA(char p_a); //// Attributes //// protected : char a;//## attribute a };

16 16 Auto implementation (c.cpp file) #include "c.h" //## class c c::c() { } c::~c() { } int c::method(char x) { //#[ operation method(char) a=x; return 2; //#] void c::setA(char p_a) { a = p_a; } char c::getA() const { return a; }

17 17 Class attributes public int getI() { return i; } public void setI(int p_i) { i = p_i; } //## class c public class c { protected int i;//## attribute i protected int j;//## attribute j protected int k;//## attribute k protected int getJ() { return j; } protected void setJ(int p_j) { j = p_j; } private int getK() { return k; } private void setK(int p_k) { k = p_k; }

18 18 Class generalization Class d{…} Class c: public d{…}

19 19 Class generalization by tool (c.h) #include "d.h" //## package Default //--------------------- // c.h //--------------------- //## class c class c : public d {…}

20 20 Component (package) namespace HelloPackage { class upper{... }; Class display{... }; Class helper{... };... }

21 21 Auto implementation // HelloPackage.h namespace HelloPackage { class Display; class helper; class upper; } // Display.h namespace HelloPackage { //## class Display class Display : public HelloPackage::upper {...}...}

22 22 Aggregation ////whole.h //// Relations and components //// protected : c* itsC;//## link itsC d* itsD;//## link itsD public : //## auto_generated void __setItsC(c* p_c); //## auto_generated void __setItsD(d* p_d); /************************************** ////c.h //// Relations and components protected : whole* itsWhole; //## link itsWhole whole::~whole() { cleanUpRelations(); } void whole::cleanUpRelations() { if(itsC != NULL) { whole* p_whole = itsC->getItsWhole(); if(p_whole != NULL) { itsC->__setItsWhole(NULL); } itsC = NULL; } if(itsD != NULL) { whole* p_whole = itsD->getItsWhole(); if(p_whole != NULL) { itsD->__setItsWhole(NULL); } itsD = NULL; }

23 23 Strong Aggregation ////whole.h //// Relations and components //// protected : c* itsC;//## link itsC d* itsD;//## link itsD public : //## auto_generated void __setItsC(c* p_c); //## auto_generated void __setItsD(d* p_d); /************************************** ////c.h //// Relations and components protected : whole* itsWhole; //## link itsWhole whole::whole(OMThread* p_thread) { setThread(p_thread, FALSE); initRelations(); } void whole::initRelations() { itsC = newItsC(); itsD = newItsD(); } void whole::cleanUpRelations() { { deleteItsD(); itsD = NULL; } { deleteItsC(); itsC = NULL; }

24 24 Dependency //// Relations and components //// layer.h protected : Display* itsDisplay; //## link itsDisplay ////layer.cpp void layer::setItsDisplay(Display* p_Display) { itsDisplay = p_Display; } void layer::cleanUpRelations() { if(itsDisplay != NULL) { itsDisplay = NULL; } void layer::test() { //#[ operation test() j=itsDisplay->getI() ; //#] }

25 25 Association ////c.h //// Relations and components protected : d* itsD; //## link itsD // c.cpp //--------- //## class c int c::method(int x) { //#[ operation method(int) i=x; return itsD->getJ(); //#]

26 26 Association with *-multiplicity ////c.h #include //// Relations and components protected : OMCollection itsD; //## link itsD // c.cpp void c::_addItsD(d* p_d) { itsD.add(p_d); } void c::addItsD(d* p_d) { if(p_d != NULL) { p_d->_addItsC(this); } _addItsD(p_d); }

27 27 Simple State Machine int Display::rootState_dispatchEvent(short id) { int res = eventNotConsumed; switch (rootState_active) { case switchedOn: { if(IS_EVENT_TYPE_OF(off_system_id)) { rootState_subState = state_1; rootState_active = state_1; res = eventConsumed; } break; } default: break; } return res; } void Display::initStatechart() { rootState_subState = OMNonState; rootState_active = OMNonState; }

28 28 Two - State Machine int Display::rootState_dispatchEvent(short id) { int res = eventNotConsumed; switch (rootState_active) { case switchedOn: { if(IS_EVENT_TYPE_OF(react_system_id)) { //#[ transition 2 i++; //#] rootState_subState = Activated; rootState_active = Activated; res = eventConsumed; } else if(IS_EVENT_TYPE_OF(off_system_id)) { rootState_subState = state_1; rootState_active = state_1; res = eventConsumed; } break; } case Activated: {

29 29 Hierarchical State Machine case active: { if(IS_EVENT_TYPE_OF(suspT_system_id)) { Activated_subState = Tsuspend; rootState_active = Tsuspend; res = eventConsumed; } if(res == eventNotConsumed) { res = Activated_takeEvent(id); } break; } int Display::Activated_takeEvent(short id) { int res = eventNotConsumed; if(IS_EVENT_TYPE_OF(susp_system_id)) { Activated_subState = OMNonState; switchedOn_subState = Psuspend; rootState_active = Psuspend; res = eventConsumed; } if(res == eventNotConsumed) { res = switchedOn_takeEvent(id); } return res; } void Display::Activated_entDef() { switchedOn_subState = Activated; Activated_subState = active; rootState_active = active; }

30 30 History State Machine case active: { res = active_takeEvent(id); break; } int Display::active_takeEvent(short id) { int res = eventNotConsumed; if(IS_EVENT_TYPE_OF(suspT_system_id)) { Activated_subState = Tsuspend; rootState_active = Tsuspend; res = eventConsumed; } if(res == eventNotConsumed) { res = Activated_takeEvent(id); } return res; }

31 31 History State Machine int Display::Activated_takeEvent(short id) { leaving activated if(IS_EVENT_TYPE_OF(susp_system_id)) { Activated_lastState = Activated_subState; switch (Activated_subState) { case active: { Activated_lastState = active; break; } ……………… Activated_subState = OMNonState; switchedOn_subState = Psuspend; rootState_active = Psuspend; res = eventConsumed; } ----------------------------------------------------------------------------------------------------- case Psuspend: reentering activated { if(IS_EVENT_TYPE_OF(react_system_id)) { …………….. Activated_subState = Activated_lastState; switch (Activated_subState) { case active: { Activated_subState = active; rootState_active = active; break; }

32 32 System implementation of component HelloWorld #include "MainHelloWorld.h" #include "c.h" #include "d.h" #include "whole.h" //---------------------------------------------------------------------------- // MainHelloWorld.cpp //---------------------------------------------------------------------------- //## configuration HelloWorld::HelloWorld int main(int argc, char* argv[]) { if(OXF::init(argc, argv, 6423)) { c * p_c; d * p_d; whole * p_whole; HelloWorld initializer_HelloWorld; p_c = new c; p_d = new d; p_whole = new whole; //#[ configuration HelloWorld::HelloWorld //#] OXF::start(); delete p_c; delete p_d; delete p_whole; return 0; } else { return 1; } Optional

33 33 Overview of design implementation Purpose Realisation of the component design Concepts Patterns for component connection and UML diagram implementation Principles Evaluate component connections and change via patterns Generate code Keep consistency between design and implementation Result A collection of component implementations Tool support is needed!

34 34 Exercise Consider your ”Model” component Implement selected classes and associations/aggregations

35 35 Auto implementation (d.h file) typedef struct d d; /*## class d */ struct d { /*** User explicit entries ***/ char a;/*## attribute a */ }; /* Constructors and destructors:*/ /*## auto_generated */ void d_Init(d* const me); void d_Cleanup(d* const me); d * d_Create(); void d_Destroy(d* const me);

36 36 Auto implementation (d.c file) #include "d.h" /*** Methods implementation ***/ d * d_Create() { d* me = (d *) malloc(sizeof(d)); if(me!=NULL) { d_Init(me); } return me; } void d_Destroy(d* const me) { if(me!=NULL) { d_Cleanup(me); } free(me); }


Download ppt "1 OOAD Detailed Design From Design to Implementation ITV Modelbased Analysis and Design of Embedded Software Anders P. Ravn & Arne Skou Aalborg University."

Similar presentations


Ads by Google