Presentation is loading. Please wait.

Presentation is loading. Please wait.

LING/C SC/PSYC 438/538 Computational Linguistics Sandiway Fong Lecture 10: 9/27.

Similar presentations


Presentation on theme: "LING/C SC/PSYC 438/538 Computational Linguistics Sandiway Fong Lecture 10: 9/27."— Presentation transcript:

1 LING/C SC/PSYC 438/538 Computational Linguistics Sandiway Fong Lecture 10: 9/27

2 Today’s Topics Homework 2 review Recap: DCG system New topic: Finite State Automata (FSA)

3 Homework 2 Review Question 1 –Consider a language L 3or5 = {111, 11111, 111111, 111111111, 1111111111, 111111111111, 111111111111111,...} –each member of L 3or5 is a string containing only 1s –the number of 1s in each string is divisible by 3 or 5 Give a regular grammar that generates language L 3or5

4 Homework 2 Review Regular grammar: –divisible by 3 side 1.s --> [1], a. 2.a --> [1], b. 3.b --> [1]. 4.b --> [1], c. 5.c --> [1], d. 6.d --> [1], b. Regular grammar: –divisible by 5 side 7.s --> [1], one. 8.one --> [1], two. 9.two --> [1], three. 10.three --> [1], four. 11.four --> [1]. 12.four --> [1], five. 13.five --> [1], six. 14.six --> [1], seven. 15.seven --> [1], eight. 16.eight --> [1], four. take the disjunction of the two sub-grammars, i.e. merge them

5 Homework 2 Review Question 2: Language L = {a 2n b n+1 | n ≥1} is also non-regular but can be generated by a regular grammar extended to allow left and right recursive rules Given a Prolog grammar satisfying these rules for L Legit rules: X -> aY X -> a X -> Ya –where X, Y are non- terminals, a is some arbitirary terminal

6 Homework 2 Review L = {a 2n b n+1 | n≥ 1} DCG: 1.s --> [a], b. 2.b --> [a], c. 3.c --> [b], d. 4.c --> s, [b]. 5.d --> [b]. generated by rules 1 + 2 + 3 + 5 generated by rules 1 + 2 + 4 (center-embedded recursive tree) d b b b s c a a bs b s c a a

7 Homework 2 Review Question 3 (Optional 438) A right recursive regular grammar that generates a (rightmost) parse for the language {a n | n>=2}: s(s(a,B)) --> [a], b(B). b(b(a,B)) --> [a], b(B). b(b(a))--> [a]. Example ?- s(Tree,[a,a,a],[]). Tree = s(a,b(a,b(a)))? A corresponding left recursive regular grammar will not halt in all cases when an input string is supplied Modify the right recursive grammar to produce a left recursive parse, e.g. ?- s(Tree,[a,a,a],[]). Tree = s(b(b(a),a),a) Can you do this for any right recursive regular grammar? e.g. the one for sheeptalk

8 Homework 2 Review Original: s(s(a,B)) --> [a], b(B). b(b(a,B)) --> [a], b(B). b(b(a))--> [a]. New: 1.s(s(B,a)) --> [a], b(B). 2.b(b(B,a)) --> [a], b(B). 3.b(b(a))--> [a]. taking advantage of the fact that we know we’re generating only a’s example: in rule 1, we match a terminal a on the left side but place an a at the end for the tree

9 Extra Arguments: Recap some uses for extra arguments on non-terminals in the grammar: 1.to generate a parse tree recording the derivation history 2.feature agreement 3.implement counting

10 Extra Arguments: Recap Implement Determiner-Noun Number Agreement Data: –the man/men –a man/*a men Modified grammar: np(np(D,N)) --> det(D,Number), common_noun(N,Number). det(det(the),_) --> [the]. det(det(a),sg) --> [a]. common_noun(n(ball),sg) --> [ball]. common_noun(n(man),sg) --> [man]. common_noun(n(men),pl) --> [men]. np(np(D,N)) --> detsg(D), common_nounsg(N). np(np(D,N)) --> detpl(D), common_nounpl(N). detsg(det(a)) --> [a]. detsg(det(the)) --> [the]. detpl(det(the)) --> [the]. common_nounsg(n(man)) -->[man]. common_nounpl(n(men)) --> [men]. syntactic sugar could just encode feature values in nonterminal name

11 Extra Arguments: Recap Class Exercise: –Implement Case = {nom,acc} agreement system for the grammar –Examples: the man hit me vs. *the man hit I Modified grammar: s(Y,Z)) --> np(Y,Case), vp(Z), { Case = nom }. np(np(Y),Case) --> pronoun(Y,Case). pronoun(i,nom) --> [i]. pronoun(we,nom) --> [we]. pronoun(me,acc) --> [me]. np(np(D,N),_) --> det(D,Num), common_noun(N,Num). vp(vp(Y,Z)) --> transitive(Y), np(Z,Case), { Case = acc }. {... Prolog code... }

12 Extra Arguments: Recap Class Exercise: –Implement Case = {nom,acc} agreement system for the grammar –Examples: the man hit me vs. *the man hit I Modified grammar: s(Y,Z)) --> np(Y,nom), vp(Z). np(np(Y),Case) --> pronoun(Y,Case). pronoun(i,nom) --> [i]. pronoun(we,nom) --> [we]. pronoun(me,acc) --> [me]. np(np(D,N),_) --> det(D,Num), common_noun(N,Num). vp(vp(Y,Z)) --> transitive(Y), np(Z,acc). without {... Prolog code... }

13 Extra Arguments: Recap 1.s --> [a],b. 2.b --> [a],b. 3.b --> [b],c. 4.b --> [b]. 5.c --> [b],c. 6.c --> [b]. L = a + b + a regular grammar L ab = { a n b n | n ≥ 1 } regular grammar + extra argument 1.s(X) --> [a],b(a(X)). 2.b(X) --> [a],b(a(X)). 3.b(a(X)) --> [b],c(X). 4.b(a(0)) --> [b]. 5.c(a(X)) --> [b],c(X). 6.c(a(0)) --> [b]. Query: ?- s(0,L,[]).

14 Extra Arguments: Recap 1.s(X) --> [a],b(a(X)). 2.b(X) --> [a],b(a(X)). 3.b(a(X)) --> [b],c(X). 4.b(a(0)) --> [b]. 5.c(a(X)) --> [b],c(X). 6.c(a(0)) --> [b]. derivation tree: s(0) rule 1 logic: ?- s(0,L,[]). start with 0 wrap an a(_) for each “a” unwrap a(_) for each “b” match #a’s with #b’s = counting a b(a(0)) rule 2 a b(a(a(0))) rule 3 b b c(a(0)) rule 6

15 So far Equivalent formalisms regexp regular grammars FSA

16 example (sheeptalk) –baa! –baaa! … regexp –baa+! wx z a ! y a a > s b points to start state end state marked in red basic idea: “just follow the arrows” state state transition: in state s, if current input symbol is b go to state w accepting computation: in a final state, if there is no more input, accept string

17 FSA: Construction step-by-step regexp –baa+! = –baaa*! s >

18 FSA: Construction step-by-step regexp –baaa*! –b –from state s, –see a ‘b’, –move to state w sw b >

19 FSA: Construction step-by-step regexp –baaa*! –ba –from state w, –see an ‘a’, –move to state x sw b x a >

20 FSA: Construction step-by-step regexp –baaa*! –baa –from state x, –see an ‘a’, –move to state y sw b x a > y a

21 FSA: Construction step-by-step regexp –baaa*! –baaa* –baa –baaa –baaaa... –from y, –see an ‘a’, –move to ? sw b x a > y y’ a a a... but machine must have a finite number of states!

22 Regular Expressions: Example step-by-step regexp –baaa*! –baa* –baa –baaa –baaaa... –from state y, –see an ‘a’, –“loop”, i.e. move back to, state y sw b x a a > y a

23 Regular Expressions: Example step-by-step regexp –baaa*! –from state y, –see an ‘!’, –move to final state z (indicated in red) Note: machine cannot finish (i.e. reach the end of the input string) in states s, w, x or y sw b x a a > y a z !

24 Finite State Automata (FSA) construction –the step-by-step FSA construction method we just used –works for any regular expression conclusion –anything we can encode with a regular expression, we can build a FSA for it –an important step in showing that FSA and regexps are formally equivalent

25 regexp operators and FSA basic wildcards –. and *. any single character e.g. p.t put, pit, pat, pet * zero or more characters xy d a b c e z etc.... y a etc. one loop for each character over the whole alphabet

26 regexp operators and FSA basic wildcards –+ one or more of the preceding character e.g. a+ –[ ] range of characters e.g. [aeiou] xy a a xy o a e i u

27 regexp operators and FSA basic wildcards –?–? zero or one of the preceding character e.g. a? Non-determinism –any FSA with an empty transition is non-deterministic –see example: could be in state x or y simultaneous –any FSA with an empty transition can be rewritten without the empty transition xy a λ λ denotes the empty transition xy a >

28 regexp operators and FSA backreferences: –by state splitting –e.g. ([aeiou])\1 xy o a e i u yz o a e i u x yuyu o a e i u z yaya yeye yiyi yoyo o a e u

29 Finite State Automata (FSA) more formally –(Q,s,f,Σ,  ) 1.set of states (Q): {s,w,x,y,z} 4 statesmust be a finite set 2.start state (s): s 3.end state(s) (f): z 4.alphabet ( Σ ): {a, b, !} 5.transition function  : signature: character × state → state  (b,s)=w  (a,w)=x  (a,x)=y  (a,y)=y  (!,y)=z sw b x a a > y a z !

30 FSA Finite State Automata (FSA) have a limited amount of expressive power Let’s look at a modification to FSA and its effect on its power

31 String Transitions –so far... all machines have had just a single character label on the arc so if we allow strings to label arcs –do they endow the FSA with any more power? b Answer: No –because we can always convert a machine with string-transitions into one without abb abb

32 Finite State Automata (FSA) equivalent s z baa ! y a > 5 state machine sw b x a a > y a z ! 3 state machine using string transitions


Download ppt "LING/C SC/PSYC 438/538 Computational Linguistics Sandiway Fong Lecture 10: 9/27."

Similar presentations


Ads by Google