Presentation is loading. Please wait.

Presentation is loading. Please wait.

Symptom Management in Palliative ICU Patients

Similar presentations


Presentation on theme: "Symptom Management in Palliative ICU Patients"— Presentation transcript:

1 Symptom Management in Palliative ICU Patients
With a Focus on Pain, Dyspnea, and Addressing in the Palliative Withdrawal of Ventilatory Support in the Awake Patient Mike Harlos MD, CCFP, FCFP Professor and Section Head, Palliative Medicine, University of Manitoba Medical Director, WRHA Adult and Pediatric Palliative Care

2

3

4 Objectives Appreciate the common physical symptoms experienced by palliative patients in the ICU Review the common approaches for symptom control at the end of life, particularly pain and dyspnea Discuss therapeutic considerations prior to ventilator withdrawal especially in the awake patient

5 The presenter has no conflict of interest to disclose

6 There are no “do-overs”
in managing a death

7 Addressing Comfort During Palliative Withdrawal Of Life-Sustaining Ventilatory Support in the Awake Patient

8 Assumptions the circumstances being considered pertain to patients expected to die without support (‘terminal wean’) rather than a trial of weaning for potential ICU discharge may include patients with stenting endotracheal tubes for obstructing tumour, with normal resp drive and strength in response to the informed request of the awake and competent patient or their proxy/surrogate decision maker focuses on the practical/clinical considerations involved in ensuring comfort during withdrawal of ventilator support, particularly in the alert patient

9 Examples of Our Palliative Care Experiences
74 yo man with multisystem failure due to primary amyloidosis respiratory failure, on dialysis, TPN, pressor infusion transferred directly from SBGH ICU to a farm two hours out of town on which he was born, and which his family homesteaded. 52 yo woman with untreatable obstructing mediastinal tumour, in ICU with stenting endotracheal tube, requesting extubation 63 yo man with obstructing laryngeal tumour, intubated in spite of clear wishes to the contrary after collapsing in the community with acute obstruction once he awoke in SICU he demanded extubation wanted no meds given – wanted to say goodbye to his children with his own voice if possible 71 yo man with advanced ALS, locked-in (only motor function was right lateral gaze of the right eye), wanting vent withdrawal in the home

10 General Considerations In Withdrawing Ventilatory Support In The Awake Patient Expected To Die
facilitating saying good-bye to family and friends, and perhaps the health care team the concept of picking a date and time of death may seem surreal the potential for severe distress is very real – and predictable very challenging to gauge potential for patient to breathe unsupported after withdrawal not uncommon for the person who “never triggers the vent” to breathe for hours or days following withdrawal

11 Exploring Issues/Concerns With Patient, Family, Team Prior To Withdrawal
difference between withdrawing ventilator and euthanasia allowing the death to unfold naturally from the underlying illness, as it would have done the issue of “playing God” staff feelings of moral/professional/religious compromise need for pre-briefings, de-briefings, education, mediation, supportive counseling what they can expect to see the outcome is not always certain

12 How Alert Is The Patient?
if alert and no CNS impairment (such as with ALS or an obstructing tumour stented with an ET tube) must ensure a deep level of sedation prior to beginning withdrawal of ventilatory support if the patient has suffered a devastating neurological injury and is deeply comatose, there is less potential for experiencing air hunger

13 Anticipatory (Preemptive) vs. Reactive Medications
reactive dosing essentially requires suffering the impact of the medication delivery system must be considered in reactive dosing, e.g. PCA bolus on a pump with long tubing, vs. manual push into port near the patient pharmacokinetics of different opioids not always taken into consideration when planning reactive dosing pharmacokinetics of infusions for anticipatory dosing also not always considered – loading dose needed

14 the concept of "anticipatory dosing" (as opposed to reactive dosing) should guide clinicians in the use of sedation and analgesia at the end of life the rapid withdrawal of mechanical ventilation is an example of the need for anticipatory dosing reactive dosing not sufficient as a general rule, the doses of medication that the patient has been receiving hourly should be increased by two- or three-fold and administered acutely before withdrawing mechanical ventilation

15 Slow vs. Fast Withdrawal?
“the only justification for gradual reduction of ventilatory support is to allow time to control dyspnea through the titration of medications” Extubate or not? considerable variation RE whether to extubate; each circumstance should be approached individually extubation before death is associated with higher family satisfaction (Hinkle LJ, Bosslet GT, and Torke AM. Factors associated with family satisfaction with end-of-life care in the ICU: a systematic review. Chest. United States; 2015;147(1):82-93)

16 Titration of Analgesics and Sedatives: increase in response to:
patient's request signs of respiratory distress physiological signs: unexplained tachycardia, hypertension, diaphoresis, facial grimacing, tearing, vocalizations with movements, turns or other nursing care restlessness The total amount of drugs required for any individual patient may far exceed any preconceived notions of “usual” Paraphrased: If the patient tells you they’re in distress, or it looks like they’re in distress, treat with an effective dose of medication

17 Does a Maximal Dose of Opioids or Sedatives Exist?
No. The goal of palliative care is to provide relief of pain and suffering and whatever the amount of drugs that accomplishes this goal is the amount that is needed for that individual patient. Paraphrased: The correct dose of an opioid or sedative is the one that works, proportionate to distress and within acceptable adverse effects Should Analgesics and Sedatives be Administered in Response to Signs and Symptoms of Pain and Suffering, or Before They Begin? Support for both approaches exists among lntensivists on this panel. Paraphrased: Yes. If the patient is in pain, treat the pain. If you’re about to do something that will likely hurt, treat preemptively.

18 Onset of Opioid Effect Determined by: route of administration dose
Ref: Geriatric Anesthesiology 2nd Edition 2008; Jeffrey Silverstein (Editor), Alec Rooke (Editor), J. G. Reves (Editor), Charles H. McLeskey (Editor); Springer Publications Determined by: route of administration dose pharmacokinetics determining plasma concentrations over time rate of blood-brain equilibration between the plasma and the site of drug effect

19 Ref: Geriatric Anesthesiology 2nd Edition 2008; Jeffrey Silverstein (Editor), Alec Rooke (Editor), J. G. Reves (Editor), Charles H. McLeskey (Editor); Springer Publications

20 Barr J et al; American College of Critical Care Medicine
Barr J et al; American College of Critical Care Medicine. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med; 2013;41(1):

21 How Effectively Can You Gauge Distress?
locked-in / advanced ALS – may lack usual visual cues of distress – these patients also have virtually no capability for unsupported breathing vital signs (tachycardia or elevated blood pressure) may not reliably reflect discomfort medication effects (e.g. scopolamine) or physiologic changes (e.g. hypoxia) may result in changes in vital signs without patient necessarily experiencing discomfort the inability to adequately gauge distress compels an effective preemptive approach to ensure that air hunger could not possibly be present

22 71 yo man “locked-in” with advanced ALS dx approx 18 mo. earlier
trach/vent support at home; very capable spouse as main caregiver consistently expressed wish to be withdrawn from ventilator once communication severely impaired – that time had come still had right lateral movement of his right eye; through yes/no questions could indicate that he wanted withdrawal did not want to leave home – however it was not clear that a home vent withdrawal had been done before in Winnipeg resp team described absent ability to trigger vent

23 Challenges could not assess distress due to locked-in state, severe motor impairment published protocols describing terminal vent withdrawal relied on morphine and on reactive dosing in response evidence of distress local colleagues expressed significant concern with an approach involving aggressive administration of opioids and sedatives Outcome reviewed plan of using high-dose opioids and midazolam with Ethics (including international discussion list), CPSM, Medical Examiner – all were supportive attended patient’s home the day after Halloween (per patient’s request – wanted to see children enjoying Halloween); lots of family present, priest present administered morphine, midazolam, haloperidol, scopolamine withdrew ventilatory support; deceased 10 minutes later

24 Respiratory Physiology For The Palliative MD
opioids CNS pathology ALS Muscular dystrophy Pulm. fibrosis Severe blood loss Mitochondrial disorders Brain (or brainstem) says “breathe” Nerves transmit this message on to the muscles Muscles do the work of breathing Lungs Exchange Air Blood Transports Oxygen Tissues Use Oxygen

25 Series circuit wiring-
if one component fails, they all fail

26 Mitochondrial disorders Brain (or brainstem) says “breathe”
opioids CNS pathology ALS Muscular dystrophy Pulm. fibrosis Severe blood loss Mitochondrial disorders Brain (or brainstem) says “breathe” “zero” capability in any element means zero overall “zero” not that common – e.g. locked-in ALS in the context of zero resp. capability due to severe illness, opioids cannot make zero worse than zero – no fatal or compromising dose must err on the side of aggressive dosing in vent withdrawal Nerves transmit this message on to the muscles Muscles do the work of breathing Lungs Exchange Air Blood Transports Oxygen Tissues Use Oxygen

27 Prepare for addressing:
dyspnea anxiety secretions nausea/vomiting from opioid boluses seizures? potential for temporarily needing oral airway after extubation – at least until best positioning found post-extubation stridor? (Khemani RG, Randolph A, and Markovitz B. Corticosteroids for the prevention and treatment of post-extubation stridor in neonates, children and adults. Cochrane Database Syst Rev. England; 2009;(3)) families should be prepared for certain physical changes that can’t be prevented – cyanosis, mottling, occasionally some movements

28 – The patient should now be deeply asleep –
My Usual Approach Continue existing opioid and sedative infusions Approx. 30 minutes prior to beginning the withdrawal, administer intravenously: morphine (dose depends on existing opioid tolerance), or fentanyl (if already on a fentanyl infusion) methotrimeprazine – e.g. 25 mg IV – antinauseant, sedative scopolamine 0.6 mg midazolam – typically 2.5 – 5 mg; depends on existing tolerance – The patient should now be deeply asleep – Reduce ventilatory support “by about half” for 10 minutes (Resp. Therapists take care of the details of this for me) Consider repeating midazolam and morphine at this time, depending on assessment of patient’s level of sedation Discontinue ventilator If needed administer “unit doses” of fentanyl + midazolam – premixed in individual syringes (e.g. 100 mcg fentanyl plus 2 mg midazolam) – in response to distress

29 What Is The Correct Opioid Dose For Safely Ensuring Comfort During Terminal Wean/Extubation?
Not Enough Too Much Somewhere in here

30 Put another way – there are only three doses of opioids in such circumstances:
Not enough Just right Too much Not enough is unconscionable; just right is unrealistic. If we are going to err on the side of allowing a suffocating death versus potentially hastening a relentless and certain progression towards a natural death, which side should we err on? Whose needs are being met by conservative dosing?

31 DOCTRINE OF DOUBLE EFFECT
From Principles of Biomedical Ethics, Beauchamp & Childress; 7th Ed. 2013 Four conditions or elements that must be satisfied for an act with a double effect to be justified. Each is a necessary condition, and together they form sufficient conditions of morally permissible action: The nature of the act. The act must be good, or at least morally neutral (independent of its consequences) The agent's intention. The agent intends only the good effect. The bad effect can be foreseen, tolerated, and permitted, but it must not be intended. The distinction between means and effects. The bad effect must not be a means to the good effect. If the good effect were the direct causal result of the bad effect, the agent would intend the bad effect in pursuit of the good effect. Proportionality between the good effect and the bad effect. The good effect must outweigh the bad effect. That is, the bad effect is permissible only if a proportionate reason compensates for permitting the foreseen bad effect 31

32 considerations about appropriate opioid doses in terminal extubation are pretty much the only circumstances where the Doctrine of Double Effect feels potentially relevant in palliative care practice personal experience – not one circumstance where I felt I needed to “invoke the Doctrine”

33 studies on post-ICU patients showed that 82% remembered pain or discomfort associated with the endotracheal tube and 77% remembered experiencing other moderate to severe pain during their ICU stay pain assessment in the non-verbal patient challenging

34 Approach To Pain Control in the Palliative Patient
Thorough assessment History – (challenging in the non-communicative patient) - including detailed description of pain; psychosocial, spiritual, & cultural context; concerns about what the pain means; medication history Physical Examination Pause here - discuss with patient/family the goals of care, hopes, expectations, anticipated course of illness. This will influence consideration of investigations and interventions Investigations – X-Ray, CT, MRI, etc - if they will affect approach to care Treatments – pharmacological and non-pharmacological; interventional analgesia (e.g. spinal); RadTx Ongoing reassessment and review of options, goals, expectations, etc.

35 American College of Critical Care Medicine Clinical practice guidelines: Recommendations RE Pain Assessment We recommend that pain be routinely monitored in all adult ICU patients The Behavioral Pain Scale (BPS) and the Critical-Care Pain Observation Tool (CPOT) are the most valid and reliable behavioral pain scales for monitoring pain in medical, postoperative, or trauma (except for brain injury) adult ICU patients who are unable to self- report and in whom motor function is intact and behaviors are observable. We do not suggest that vital signs (or observational pain scales that include vital signs) be used alone for pain assessment in adult ICU patients We suggest that vital signs may be used as a cue to begin further assessment of pain in these patients, however

36 A Visual Analogue Scale Developed For Nonverbal Children – May Be Used In Nonverbal Adults

37 TYPES OF PAIN Somatic Visceral NOCICEPTIVE NEUROPATHIC bones, joints
connective tissues muscles sharp dull & aching can localize site may be worse with movement (“incident pain”) Visceral Organs – heart, liver, pancreas, gut, etc. may be crampy, or dull & aching referred pain difficult to localize difficult to describe; not a typical “pain” numb; burning; tingling; crawling; stabbing; etc allodynia consider it as a possible element of any difficult pain syndrome

38 important to have at least a working assumption of the underlying pain mechanism
not all pain syndromes are expected to respond fully to opioids – specifically neuropathic pain difficult to diagnose neuropathic pain if communication limited. Consider if: previous diagnosis of neuropathic pain solid tumours (not just ones involving nerve plexus or spinal cord) predisposing medical conditions or medications (diabetes mellitus, chemotherapies such as cisplatin etc) ischemic limbs (nerves are damaged by the ischemia) bone mets – increasing evidence for a neuropathic element

39 Opioid Selection for parenteral administration, typically use morphine, hydromorphone, or fentanyl selection depends on comorbidities, previous adverse reactions morphine and hydromorphone have active metabolites that accumulate in renal insufficiency and are implicated in the development of opioid-induced neurotoxicity fentanyl has no known active metabolites; preferred in renal insuff parenteral methadone would be a very useful medication, however not available in Canada (is available in UK, Europe, Australia, USA) methadone: NMDA receptor antagonism; may help in neuropathic pain, situations of high opioid tolerance, or opioid-induced neurotoxicity caution RE drug interactions, QTc interval prolongation no known active metabolites; preferred in renal insuff

40 Basic Conversions – Starting Points For Consideration
Drug Conversion Notes morphine:hydromorphone 5 mg morphine = 1 mg hydromorphone hydromorphone is about 5 times more potent than morphine fentanyl:morphine (parenteral) 100 mcg (0.1 mg) fentanyl = 10 mg morphine fentanyl is about 100 times more potent than morphine morphine:oxycodone 1.5 mg morphine = 1 mg oxycodone oxycodone is about 1.5 times more potent than morphine methadone:anything Context dependent Cautions: particularly in high doses, tolerance to one opioid will not be fully crossed over to another (incomplete cross-tolerance) – consider reducing converted dose in the context of opioid-induced neurotoxicity, there are no conversion ratios

41

42 Parenteral Adjuvants To Consider For Neuropathic Pain
Ketamine (NMDA receptor antagonist) Taylor M, Jakacki R, May C, Howrie D, and Maurer S. Ketamine PCA for Treatment of End-of-Life Neuropathic Pain in Pediatrics. Am J Hosp Palliat Care. 2014 Kim K, Mishina M, Kokubo R, Nakajima T, Morimoto D, Isu T, Kobayashi S, and Teramoto A. Ketamine for acute neuropathic pain in patients with spinal cord injury. J Clin Neurosci. Scotland; 2013;20(6):804-7. Dexmedetomidine (alpha-2 agonist) Hilliard N, Brown S, and Mitchinson S. A case report of dexmedetomidine used to treat intractable pain and delirium in a tertiary palliative care unit. Palliat Med. England; 2015;29(3):278-81 Ghobadifar MA, Pourghashdar F, Akbarzadeh A, and Mosallanejad Z. Combined use of intrathecal opioids and dexmedetomidine in the management of neuropathic pain. Korean J Pain. Korea (South); 2015;28(2):156-7 O'Neil T, Rodgers PE, and Shultz C. Dexmedetomidine as adjuvant therapy for acute postoperative neuropathic pain crisis. J Palliat Med. United States; 2014;17(10):1164-6

43 Spectrum of Opioid-Induced Neurotoxicity
discontinue the offending opioid aggressive hydration; may need to monitor electrolytes use prn doses of opioid-naïve doses of fentanyl – e.g mcg IV q15 min prn (unless it is the offending opioid) after several hours, determine a fentanyl infusion rate consider: ketamine (NMDA antagonist) to reduce extreme opioid tolerance

44 Dyspnea In The Palliative Patient
an uncomfortable awareness of breathing… an experience of breathlessness rather than an observation of increased work of breathing increasing incidence as death nears; can escalate quickly resulting in missed opportunities for comfort measures severe dyspnea in the context of advances terminal illness usually reflects imminent death

45 n = 96 patients mechanically vented > 24h
dyspnea evaluated on a “yes–no” basis if yes, it was followed by a visual analog scale (VAS) and descriptor choice (“air hunger” and/or “respiratory effort”) Pain & anxiety also assessed by VAS

46 47% reported dyspnea dyspnea was significantly associated with anxiety (odds ratio 8.84) adjusting ventilator settings improved dyspnea in 35% of patients

47 Addressing Dyspnea In The Palliative Patient
gold standard for assessment is patient report, as with any experiential symptom in the non-verbal patient, the usual clinical assessment is a combination of: work of breathing – which may be absent in a ventilated patient (increased rate, accessory muscle use) evidence of distress (fearful look, restless, tachycardia) “gut feeling” on the part of clinicians and family in the dying palliative patient in ICU the most likely situation will be that of a restless patient who seems generally uncomfortable, for uncertain reasons should rule out obvious reversible causes of distress, and treat with opioids; will address pain and air hunger

48 American College Of Chest Physicians Consensus Statement On The Management Of Dyspnea In Patients With Advanced Lung Or Heart Disease Regarding fear of respiratory depression – higher doses of opioids and benzodiazepines used in the withdrawal of life-sustaining treatment were not associated with a decreased time from withdrawal of life support to death Of 11 studies providing information on ABGs or O2 sat, only one study reported any significant changes in oxygenation after opioid administration Recommend that: Oral and/or parenteral opioids can provide relief of dyspnea. Opioids should be dosed and titrated for the individual patient with consideration of multiple factors (e.g., renal, hepatic, pulmonary function, and current and past opioid use) for relief of dyspnea.

49 Official American Thoracic Society Statement: Update on the Mechanisms, Assessment, and Management of Dyspnea – 2012 Opioids have been the most widely studied agent in the treatment of dyspnea. Short-term administration reduces breathlessness in patients with a variety of conditions, including advanced COPD, interstitial lung disease, cancer, and chronic heart failure Canadian Thoracic Society Clinical Practice Guideline 2011: Managing Dyspnea In Patients With Advanced Chronic Obstructive Pulmonary Disease “We recommend that oral (but not nebulized) opioids be used for the treatment of refractory dyspnea in the individual patient with advanced COPD”

50 may reduce overall oxygen demand
“The administration of sedatives (midazolam and morphine) has been associated with decreases in oxygen demand and the attenuation of the cardiopulmonary response associated with increased work of breathing” see also: Endoh H et al; Effects of naloxone and morphine on acute hypoxic survival in mice. Crit Care Med; 1999;27(9): significantly lower oxygen consumption and improved survival in morphine treated rats subjected to acute hypoxic hypoxia

51 Common Concerns About Aggressive Use of Opioids at End-Of-Life
How do you know that the aggressive use of opioids for dyspnea doesn't actually bring about or speed up the patient's death? “I gave the last dose of morphine and he died a few minutes later… did the medication cause the death?” 51

52 Literature: the literature supports that opioids administered in doses proportionate to the degree of distress do not hasten death and may in fact delay death Clinical context: breathing patterns usually seen in progression towards dying (clusters with apnea, irreg. pattern) vs. opioid effects (progressive slowing, regular breathing; pinpoint pupils) Medication history: usually “the last dose” is the same as those given throughout recent hours/days, and was well tolerated 52


Download ppt "Symptom Management in Palliative ICU Patients"

Similar presentations


Ads by Google