Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 12 Intermolecular Forces: Liquids, Solids, and Phase Changes.

Similar presentations


Presentation on theme: "Chapter 12 Intermolecular Forces: Liquids, Solids, and Phase Changes."— Presentation transcript:

1 Chapter 12 Intermolecular Forces: Liquids, Solids, and Phase Changes

2 12.1 물리적 상태와 상 변화의 개관 표면장력 모세관 현상 점성 12.2 상 변화의 양적 측면 상 변화에 수반되는 열 12.5 물의 독특한 성질 상 변화의 평형 성질 용매 성질 상 그림 열 성질 표면 성질 12.3 분자간 힘의 형태 고체 물 및 액체 물의 밀도 이온-쌍극자 힘 쌍극자-쌍극자 힘 12.6 고체 상태: 구조, 성질 및 결합 수소 결합 전하-유발쌍극자 힘 고체의 구조적 특성 분산력(런던 힘) 결정성 고체 비결정성 고체 12.4 액체의 성질 고체의 결합

3 Intramolecular forces bonding forces
ATTRACTIVE FORCES electrostatic in nature Intramolecular forces bonding forces These forces exist within each molecule. They influence the chemical properties of the substance. Intermolecular forces nonbonding forces These forces exist between molecules. They influence the physical properties of the substance.

4 gas 상변화 liquid solid sublimination vaporizing melting condensing
freezing

5 A Macroscopic Comparison of Gases, Liquids, and Solids
Table 12.1 A Macroscopic Comparison of Gases, Liquids, and Solids State Shape and Volume Compressibility Ability to Flow Gas Conforms to shape and volume of container high Liquid Conforms to shape of container; volume limited by surface very low moderate Solid Maintains its own shape and volume almost none

6 증발열 및 융해열

7 Phase changes and their enthalpy changes.
Figure 12.2 Phase changes and their enthalpy changes.

8 기체 내 입자들은 멀리 떨어져 무작위하게 움직이고 있고,
액체 내 입자들은 서로 접하고는 있으나 상대적으로 서로 움직이고 있고, 고체 내 입자들은 서로 접하고 경직된 구조에서 위치가 고정되어 있다. 이는 분자간 힘과 운동에너지의 상대적 크기에 기인한다. 물질의 각 상태에 따른 형태, 압축률, 유동성 등 거시적 차이는 분자수준에서 차이가 있기 때문이다. 고체, 액체, 기체로 변하는 과정에서 에너지가 흡수된다. 주어진 조건하에서일어나는 각 상 변화에는 이에 해당하는 엔탈피 변화가 수반된다.

9 A cooling curve for the conversion of gaseous water to ice.
Figure 12.3 A cooling curve for the conversion of gaseous water to ice.

10 Quantitative Aspects of Phase Changes
Within a phase, a change in heat is accompanied by a change in temperature which is associated with a change in average Ek as the most probable speed of the molecules changes. q = (amount)(molar heat capacity)(T) During a phase change, a change in heat occurs at a constant temperature, which is associated with a change in Ep, as the average distance between molecules changes. q = (amount)(enthalpy of phase change)

11 Liquid-gas equilibrium.
Figure 12.4 Liquid-gas equilibrium.

12 액체 내 분자들의 속력분포와 온도 Figure 12.5

13 A linear plot of vapor pressure- temperature relationship.
Figure 12.6 Figure 12.7 A linear plot of vapor pressure- temperature relationship. Vapor pressure as a function of temperature and intermolecular forces.

14 The Clausius-Clapeyron Equation

15 Using the Clausius-Clapeyron Equation
34.9℃에서 에탄올의 증기압은 115torr이다. 에탄올의 ΔH증발은 40.5kJ/mol이다. 증기압이 760torr인 온도(℃)를 계산하라. 주어진 것들 ΔH증발, P1, P2, T1을 식 12.1에 대입하고 T2에 대해 푼다. 여기서 R 값은 8.31 J/mol·K이므로 T1을 K 단위로 바꾸어 T2를 구한 다음 T2를 다시 ℃로 바꾼다. SOLUTION: 34.90C = 308.0K 1 T2 308K - ln 760 torr 115 torr -40.5 x103 J/mol 8.314 J/mol*K = T2 = 350K = 770C

16 Phase diagrams(상도표) Figure 12.8 CO2 H2O

17 Covalent and van der Waals radii.
Figure 12.9 Covalent and van der Waals radii. van der Waal’s distance bond length covalent radius van der Waal’s radius

18 Periodic trends in covalent and van der Waals radii (in pm).
Figure 12.10 Periodic trends in covalent and van der Waals radii (in pm).

19 400∼4000 NaCl 150∼1100 H-H 75∼1000 Fe 모형 인력의 근원 에너지(kJ/mol) 보기 이온
양이온-음이온 400∼4000 NaCl 공유 핵-공유된 전자쌍 150∼1100 H-H 금속 양이온-비편재 전자들 75∼1000 Fe

20 400∼4000 NaCl 150∼1100 H-H 75∼1000 Fe 모형 인력의 근원 에너지(kJ/mol) 보기 이온
양이온-음이온 400∼4000 NaCl 공유 핵-공유된 전자쌍 150∼1100 H-H 금속 양이온-비편재 전자들 75∼1000 Fe

21 40∼600 10~40 5~25 3~15 2~10 0.05∼40 힘 모형 인력의 근원 에너지(kJ/mol) 보기 이온-쌍극자
이온전하-쌍극자 전하 40∼600 H-결합 극성결합-H쌍극자 전하 (N, O, F의 높은 전기음성도) 10~40 쌍극자-쌍극자 쌍극자 전하들 5~25 이온-유도 쌍극자 이온전하-편극된 전자구름 3~15 쌍극자-유도 쌍극자 전하- 편극된 전자구름 2~10 분산력 (런던 힘) 편극된 전자구름들 0.05∼40

22 Figure 12.11 극성 분자들과 쌍극자-쌍극자 힘. solid liquid

23 THE HYDROGEN BOND a dipole-dipole intermolecular force
A hydrogen bond may occur when an H atom in a molecule, bound to small highly electronegative atom with lone pairs of electrons, is attracted to the lone pairs in another molecule. The elements which are so electronegative are N, O, and F. hydrogen bond donor hydrogen bond acceptor .. N H .. F O .. .. H O hydrogen bond acceptor hydrogen bond donor F H .. N .. hydrogen bond acceptor hydrogen bond donor

24 Figure 12.12 쌍극자 모멘트와 끓는점

25 SAMPLE PROBLEM 12.2 Drawing Hydrogen Bonds Between Molecules of a Substance PROBLEM: Which of the following substances exhibits H bonding? For those that do, draw two molecules of the substance with the H bonds between them. (c) (a) (b) PLAN: Find molecules in which H is bonded to N, O or F. Draw H bonds in the format -B: H-A-. SOLUTION: (a) C2H6 has no H bonding sites. (b) (c)

26 Figure 12.13 수소 결합과 끓는점

27 Polarizability and Charged-Induced Dipole Forces
distortion of an electron cloud Polarizability increases down a group size increases and the larger electron clouds are further from the nucleus Polarizability decreases left to right across a period increasing Zeff shrinks atomic size and holds the electrons more tightly Cations are less polarizable than their parent atom because they are smaller. Anions are more polarizable than their parent atom because they are larger.

28 Dispersion forces among nonpolar molecules.
Figure 12.14 Dispersion forces among nonpolar molecules. separated Cl2 molecules instantaneous dipoles

29 Molar mass and boiling point.
Figure 12.15 Molar mass and boiling point.

30 Molecular shape and boiling point.
Figure 12.16 Molecular shape and boiling point. fewer points for dispersion forces to act more points for dispersion forces to act

31 SAMPLE PROBLEM 12.3 Predicting the Type and Relative Strength of Intermolecular Forces PROBLEM: For each pair of substances, identify the dominant intermolecular forces in each substance, and select the substance with the higher boiling point. (a) MgCl2 or PCl3 (b) CH3NH2 or CH3F (c) CH3OH or CH3CH2OH (d) Hexane (CH3CH2CH2CH2CH2CH3) or 2,2-dimethylbutane PLAN: Use the formula, structure and Table 2.2 (button). Bonding forces are stronger than nonbonding(intermolecular) forces. Hydrogen bonding is a strong type of dipole-dipole force. Dispersion forces are decisive when the difference is molar mass or molecular shape.

32 SAMPLE PROBLEM 12.3 Predicting the Type and Relative Strength of Intermolecular Forces continued SOLUTION: (a) Mg2+ and Cl- are held together by ionic bonds while PCl3 is covalently bonded and the molecules are held together by dipole-dipole interactions. Ionic bonds are stronger than dipole interactions and so MgCl2 has the higher boiling point. (b) CH3NH2 and CH3F are both covalent compounds and have bonds which are polar. The dipole in CH3NH2 can H bond while that in CH3F cannot. Therefore CH3NH2 has the stronger interactions and the higher boiling point. (c) Both CH3OH and CH3CH2OH can H bond but CH3CH2OH has more CH for more dispersion force interaction. Therefore CH3CH2OH has the higher boiling point. (d) Hexane and 2,2-dimethylbutane are both nonpolar with only dispersion forces to hold the molecules together. Hexane has the larger surface area, thereby the greater dispersion forces and the higher boiling point.

33 INTERACTING PARTICLES (atoms, molecules, ions)
Figure 12.17 Summary diagram for analyzing the intermolecular forces in a sample. INTERACTING PARTICLES (atoms, molecules, ions) ions present ions not present ions only IONIC BONDING (Section 9.2) nonpolar molecules only DISPERSION FORCES only polar molecules only DIPOLE-DIPOLE FORCES H bonded to N, O, or F ion + polar molecule ION-DIPOLE FORCES polar + nonpolar molecules DIPOLE- INDUCED DIPOLE FORCES HYDROGEN BONDING DISPERSION FORCES ALSO PRESENT

34 The molecular basis of surface tension.
Figure 12.18 The molecular basis of surface tension. the net vector for attractive forces is downward hydrogen bonding occurs across the surface and below the surface hydrogen bonding occurs in three dimensions

35 표면장력과 입자들 간의 힘 Table 12.3 Surface Tension Substance Formula
(J/m2) at 200C Substance Formula Major Force(s) diethyl ether CH3CH2OCH2CH3 1.7x10-2 dipole-dipole; dispersion ethanol CH3CH2OH 2.3x10-2 H bonding butanol CH3CH2CH2CH2OH 2.5x10-2 H bonding; dispersion water H2O 7.3x10-2 H bonding mercury Hg 48x10-2 metallic bonding

36 stronger cohesive forces
Figure 12.19 Shape of water or mercury meniscus in glass. capillarity stronger cohesive forces adhesive forces H2O Hg

37 Table 12.4 Viscosity of Water (물의 점성도)
viscosity - resistance to flow Viscosity (N*s/m2)* Temperature(0C) 20 1.00x10-3 40 0.65x10-3 60 0.47x10-3 80 0.35x10-3 *The units of viscosity are newton-seconds per square meter.

38 The H-bonding ability of the water molecule.
Figure 12.20 The H-bonding ability of the water molecule. hydrogen bond donor hydrogen bond acceptor

39 The Unique Nature of Water
great solvent properties due to polarity and hydrogen bonding ability exceptional high specific heat capacity high surface tension and capillarity density differences of liquid and solid states

40 The hexagonal structure of ice.
Figure 12.21 The hexagonal structure of ice.

41 The striking beauty of crystalline solids.
Figure 12.22 The striking beauty of crystalline solids.

42 The crystal lattice and the unit cell.
Figure 12.23 The crystal lattice and the unit cell. lattice point unit cell portion of a 3-D lattice portion of a 2-D lattice unit cell

43 단순입방 The three cubic unit cells. Figure 12.24 (1 of 3)
1/8 atom at 8 corners Atoms/unit cell = 1/8 * 8 = 1 배위수 = 6

44 체심입방 The three cubic unit cells. Figure 12.24 (2 of 3)
배위수= 8 1/8 atom at 8 corners 1 atom at center Atoms/unit cell = (1/8*8) + 1 = 2

45 면심입방 The three cubic unit cells. Figure 12.24 (3 of 3)
배위수 = 12 1/8 atom at 8 corners 1/2 atom at 6 faces Atoms/unit cell = (1/8*8)+(1/2*6) = 4

46 Packing of spheres. Figure 12.26 simple cubic (52% packing efficiency)
body-centered cubic (68% packing efficiency)

47 hexagonal closest packing cubic closest packing layer a layer c
Figure (continued) layer a layer b hexagonal closest packing cubic closest packing layer a layer c closest packing of first and second layers abab… (74%) hexagonal unit cell abcabc… (74%) expanded side views face-centered unit cell

48 SAMPLE PROBLEM 12.4 Determining Atomic Radius from Crystal Structure PROBLEM: Barium is the largest nonradioactive alkaline earth metal. It has a body-centered cubic unit cell and a density of 3.62 g/cm3. What is the atomic radius of barium? (Volume of a sphere: V = 4/3pr3) PLAN: We can use the density and molar mass to find the volume of 1 mol of Ba. Since 68%(for a body-centered cubic) of the unit cell contains atomic material, dividing by Avogadro’s number will give us the volume of one atom of Ba. Using the volume of a sphere, the radius can be calculated. density of Ba (g/cm3) radius of a Ba atom reciprocal divided by M V = 4/3pr3 volume of 1 mol Ba metal volume of 1 Ba atom multiply by packing efficiency volume of 1 mol Ba atoms divide by Avogadro’s number

49 SAMPLE PROBLEM 12.4 Determining Atomic Radius from Crystal Structure continued SOLUTION: 1 cm3 3.62 g x 137.3 g Ba mol Ba Volume of Ba metal = = 37.9 cm3/mol Ba 37.9 cm3/mol Ba x 0.68 = 26 cm3/mol Ba atoms 26 cm3 mol Ba atoms x mol Ba atoms 6.022x1023 atoms = 4.3x10-23 cm3/atom r3 = 3V/4p = 2.2 x 10-8cm

50 Diffraction of x-rays by crystal planes.
Figure 12.27 Diffraction of x-rays by crystal planes.

51 Formation of an x-ray diffraction pattern of the protein hemoglobin.
Figure 12.28 Formation of an x-ray diffraction pattern of the protein hemoglobin.

52 Cubic closest packing for frozen argon.
Figure 12.29 Figure 12.30 Cubic closest packing for frozen argon. Cubic closest packing of frozen methane.

53 Table 12.5 Characteristics of the Major Types of Crystalline Solids
Interparticle Forces Physical Behavior Particles Examples (mp,0C) Atomic Atoms Dispersion Soft, very low mp, poor thermal & electrical conductors Group 8A(18) [Ne-249 to Rn-71] Molecular Molecules Dispersion, dipole-dipole, H bonds Fairly soft, low to moderate mp, poor thermal & electrical conductors Nonpolar - O2[-219], C4H10[-138], Cl2 [-101], C6H14[-95] Polar - SO2[-73], CHCl3[-64], HNO3[-42], H2O[0.0] Ionic Positive & negative ions Ion-ion attraction Hard & brittle, high mp, good thermal & electrical conductors when molten NaCl [801] CaF2 [1423] MgO [2852] Metallic Atoms Metallic bond Soft to hard, low to very high mp, excellent thermal and electrical conductors, malleable and ductile Na [97.8] Zn [420] Fe [1535] Network Atoms Covalent bond Very hard, very high mp, usually poor thermal and electrical conductors

54 The sodium chloride structure.
Figure 12.31 The sodium chloride structure. expanded view space-filling

55 Crystal structures of metals.
Figure 12.32 Crystal structures of metals. hexagonal closest packing cubic closest packing

56

57 Crystalline and amorphous silicon dioxide.
Figure 12.33 Crystalline and amorphous silicon dioxide.

58 The band of molecular orbitals in lithium metal.
Figure 12.35 The band of molecular orbitals in lithium metal.

59 Electrical conductivity in a conductor, semiconductor, and insulator.
Figure 12.36 Electrical conductivity in a conductor, semiconductor, and insulator. conductor insulator semiconductor

60 The levitating power of a superconducting oxide.
Figure 12.37 The levitating power of a superconducting oxide. rare earth magnet superconducting ceramic disk liquid nitrogen

61 결정성 고체 내 입자들은 반복되는 단위세포들로 이루어진 구조를 형성하는 점들에 놓여 있다
결정성 고체 내 입자들은 반복되는 단위세포들로 이루어진 구조를 형성하는 점들에 놓여 있다. 입방계 단위세포들의 세 가지 유형으로는 단순, 체심, 면심이 있다. 가장 효율적인 쌓임 배열은 입방 조밀쌓임 및 육방 조밀쌓임이다. 결정구조 내 결합길이와 결합각은 X선 회절해석으로 결정할 수 있다. 원자 고체들은 조밀쌓임 구조를 가지며 원자들은 아주 약한 분산력으로 붙들려 있다. 분자 고체 내 분자들은 흔히 입방 조밀쌓임 구조의 격자점에 있다. 이들의 분자간힘 (분산력, 쌍극자-쌍극자 힘, 수소 결합) 및 물리적 성질들은 광범위하게 변한다. 이온 고체들은 한 가지 이온들로 이루어진 입방 조밀쌓임 구조에 생긴 구멍들을 다른 이온들이 메워 생성된다. 이 고체들의 녹는점과 경도가 높고, 전기 전도도가 낮은 것은 이온들 간의 인력이 세기 때문이다. 대부분의 금속들은 조밀쌓임 구조를 가진다. 그물구조 공유고체의 원자들은 시료 전체에 걸쳐 공유결합되어 있다. 비정형 고체들은 입자들 간에 규칙성이 거의 없다. 전자 바다 모형에 따르면 금속은 고도로 비편재화된 원자가 전자들로 이루어진 전자“바다”에 잠겨 있는 양이온들 로 되어 있다. 이 전자들은 시료 내 모든 원자들에게 공유된다. 띠 이론에 따르면 고체 내 원자들은 서로 결합하여 분자궤도함수들의 연속체, 즉 띠를 형성한다. 금속은 전자들이 이 에너지 연속체의 채워져 있는 영역(원자가띠)에서 비어있는 영역(전도띠)로 자유롭게 이동할 수 있기 때문에 전기를 통한다. 절연체에서는 이 두 영역들 간의 에너지 간격이 넓고, 반도체에서는 간격이 좁다.


Download ppt "Chapter 12 Intermolecular Forces: Liquids, Solids, and Phase Changes."

Similar presentations


Ads by Google