Presentation is loading. Please wait.

Presentation is loading. Please wait.

Institut für Kernphysik Bosen 2010 30th August 2010 Andreas Thomas Polarised Targets for Photoproduction Experiments.

Similar presentations


Presentation on theme: "Institut für Kernphysik Bosen 2010 30th August 2010 Andreas Thomas Polarised Targets for Photoproduction Experiments."— Presentation transcript:

1 Institut für Kernphysik Bosen 2010 30th August 2010 Andreas Thomas Polarised Targets for Photoproduction Experiments

2 Polarisation Observables Disentangle broad, overlapping resonances, Measure meson threshold production, quark mass ratios, Determine fundamental properties: Spin Polarisibiltities, GDH sumrule.

3 Polarised Target Polarisation = Orientation of Spins in a magnetic field Ideally: All spins in field direction P=100%

4 P=100% in reality not so easy to realise: Complicated interplay between Polarising force ~ magnetic field B and Depolarising force ~ thermal motion of spin particles (temperature T – relaxation) B = 10 -5 Tesla (earth magnetic field) T = 25° Celsius (room temperature) B = 5 Tesla (superconducting magnets) T = -273° Celsius (refrigerators) P = 10 -12 % B = 1 Tesla (superconducting magnets) T = 37° Celsius (body temperature) P = 100%DNP (particle physics) P = 10 -8 % MRI (medicine) Examples:

5 Thermal equilibrium Boltzmann distribution Trick: Transfer of the high electron polarization to the nucleon via  -wave irradiation (DNP) electronproton Magnetic moment in magnetic field: B=0T B=2.5T EE B [Tesla] T [mK]e - [%]p [%]d [%] 2,510099,80,510,10 100093,30,250,05 5,0100100,05,091,05 100099,81,280,11

6 Model: Solid State Effect (SSE) Zeemann small distance e- big (~r -3) Dipol-Dipol : Mixing of the energylevels WeWe WpWp WpWp W ep+ W ep- Magnetic Dipole transition allows Spin flip (  m=+-1) of electrons or protons. Probability to pump forbidden transitions W ep+ or W ep - ~   P| > +  | >

7 He 3 /He 4 Roots 4000m 3 /h Vacuum system Mikrowaves 70GHz D ynamic N uclear P olarization NMR-Apparatus 106MHz Polarisation meas. Components of the polarized target for the Crystal Ball detector Horizontal He 3 /He 4 Dilutionrefrigerator (30mKelvin) with internal Holding coil Superconducting Polarization magnet 5Tesla Targetmaterial H-Butanol D-Butanol Similar to Bonn Target [C.Bradtke et al., NIM A436, 430 (1999)]

8 Polarized Target for Crystal Ball Tagged CW photon beam 4  - detector Frozen spin target (30 mKelvin achieved) P proton ~ 95% P deuteron ~70% All directions of polarization New 3 He 4 He-Dilution refrigerator (in collaboration with JINR Dubna)

9 Cryogenics Evaporation cooling 2 Precooling stages: Separator (4.2Kelvin pot) Evaporator (1.5Kelvin) Dilution circuit (0.03Kelvin) 3 He 4 He-Dilution refrigerator

10 Alignment thermal radiation shieldsHigh temperature heat exchanger Alignment still and evaporator Impressions from the technical realisation

11 Transverse And Longitudinal Internal Holding coil 1.3 Kelvin 1Tesla at 46A achieved Mainz/Dubna Dilution refrigerator Separator (4.2Kelvin) Evaporator (1.5Kelvin) Mixing chamber(0.03K) Still (0.7K)

12 Holding Coil Coil has to be as thin as possible to allow low energetic particles to punch through. Subcooled Superconductor F54-1.35(0.20)TV j crit B T @4.2Kelvin @1.3Kelvin

13 Copper/scandium wire with 54 Nb-Ti filaments embedded in it. Cu:Sc= 1.35 : 1 Alloy composition: Nb 47 wt.%Ti Diameter= 0.222 mm It achieves currents up to 50 A at 4.2 K and 1 T.

14 Coil winding by TBM Mainz (Herr Kappel) Glueing by TBV Mainz (Herr Kauth)

15 Simulation and Optimisation Transverse Field Ideal case for dipole magnet: 4 -layer dipole: N 1 =N 2 = 138 N 3 =N 4 = 78

16 Production

17

18 150mm 4 -layer dipole: N1=N2= 138 N3=N4= 78

19 High Field 1T Threshold Production Transverse Field

20 Polarizing magnet He4(liq)

21 Rotation of the Holding Field 1)B z =2.5Tesla 2) B z =0.5Tesla Superconducting 2.5Tesla Magnet for polarising in z-direction

22 Rotation of the Holding Field 2) B z =0.5Tesla 3) B y =0.5Tesla Superconducting 2.5Tesla Magnet for polarising in z-direction

23 Rotation of the Holding Field 4)B z =0.0Tesla B y =0.5Tesla Superconducting 2.5Tesla Magnet for polarising in z-direction

24 Free electrons Radicals in material by chemical or radiative doping Saturated electrons of target material not polarized (Pauli principle) Butanol Ammonia LiD 30mm N H H H N O CH 3 Tempo Target material Dilution factor (e.g. f Butanol =10/74) determines quality of target material. Typically 10 23 pol. protons

25 2cm Butanol Target material

26 Cryostat Polarizing magnet Crystal Ball Frozen Spin Target Waltz 1.External magnet 2.5 T 2.Polarize with microwaves 3.Internal holding coil 0.7 T 4.Remove external magnet 5.Move CB detector in. 6.Data taking. 7.Repolarization Polarizing magnet Microwaves

27

28 New Frozen Spin Target offers all directions of polarization. Data taking with CBall TAPS detector system started February 2010. Spin observables with focus to P 11 (1440), S 11 (1535), and D 33 (1700) resonance regions. Complete Experiment. First Measurement of 4 Vector Spin Polarisabilities and T in  -threshold region planned. Conclusions Outlook Production of an internal polarising coil avoids FST waltz. FoM better. R&D for polarised active szintillator target for threshold production.

29

30

31 Loading of the target material

32 Microwave system 70 GHz Diploma Martinez 2003 NMR system 106 MHz Diploma Frömmgen 2009

33 Testrun in December 2009 Thermal Equilibrium-Signal 0.5% Polarisation 2.5Tesla,1Kelvin To be improved: HF-Lab Mainz (F.Fichtner) and Bochum Enhanced Signal at 70% Polarisation after spin rotation Transverse polarised target ready for data taking  run in February

34 Vacuum C 4 H 10 O – 60% 30mm 3He/4He – 6%

35 Holding Coil

36 1.-Longitudinal PT:a) Helicity Dependence E of Meson Photoproduction b) Measurement of the G in single pion production 2.-Transverse PT: a) Transverse asymmetries T and F in  photoproduction in the S 11 (1535) region b) Spin observables in  photoproduction in the D 33 (1700) region Double Polarised Experiments Excitation Spectrum Fundamental Properties 1.-Long. and trans. PT: Spin Polarisibilities 2.-Transverse PT: Transverse asymmetries T and F in  photoproduction in the threshold region  m u - m d


Download ppt "Institut für Kernphysik Bosen 2010 30th August 2010 Andreas Thomas Polarised Targets for Photoproduction Experiments."

Similar presentations


Ads by Google