Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ultimate wide field Imaging: The Large Synoptic Sky Survey Marek Kowalski Physikalisches Institut Universität Bonn.

Similar presentations


Presentation on theme: "Ultimate wide field Imaging: The Large Synoptic Sky Survey Marek Kowalski Physikalisches Institut Universität Bonn."— Presentation transcript:

1 Ultimate wide field Imaging: The Large Synoptic Sky Survey Marek Kowalski Physikalisches Institut Universität Bonn

2 Disclaimer This is not a “for the LSST collaboration” talk (but all plots/numbers are from LSST public domain)

3 LSST Institutions Adler Planetarium, Brookhaven National Laboratory (BNL), California Institute of Technology, Carnegie Mellon University, Cornell University, Drexel University, George Mason University, Google, Harvard-Smithsonian Center for Astrophysics, Institut de Physique Nucléaire et de Physique des Particules (IN2P3), Johns Hopkins University, Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) - Stanford University, Las Cumbres Observatory Global Telescope Network, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), National Optical Astronomy Observatory, Princeton University, Purdue University, Research Corporation for Science Advancement, Rutgers, SLAC National Accelerator Laboratory, Space Telescope Science Institute, Texas A & M University, The Pennsylvania State University, The University of Arizona, University of California at Davis, University of California at Irvine, University of Illinois at Urbana-Champaign, University of Michigan, University of Pennsylvania, University of Pittsburgh, University of Washington, Vanderbilt University

4 The survey 6-band Survey: ugrizy 320–1080 nm Sky area covered: > 20,000 deg2, 0.2 arcsec / pixel 10-Year Duration: Yields 27.7 AB magnitude @ 5σ Each 9.6 sq.deg FOV revisited ~ 1000 times Frequent revisits: 2 x 15 s, 25 AB mag/visit Photometric precision: 0.01 mag absolute 10 % of the time will be devoted to “deep” drilling

5 LSST @ Cerro Pachon 10 km away from CTIO/Cerro Tolo; 0.67“ mean seeing; 80% clear nights

6 The Telescope 8.4 m diameter 9.6 sq.deg FOV 3.2x10 9 pixels 15 s exposures 2 s readout time

7 Optic design for 3.5 deg FoV 8.4 m (primary) – 5 m (tertiary) 6.7 m effective diameter

8 The Camera

9

10 Simulation Simulation is used to evaluate analysis pipeline & algorithms as well as optimize system sensitivity

11 Simulation Example: 4k X4k LSST CCD 15 sec exposures in gr&i

12 Sky coverage

13 Data managment (challenge) 15 TB per night 5.6 PB image data/yr 0.6 PB catalog data /yr 60 seconds alert latency

14 LSST Science Book Contents: – Introduction – LSST System Design – System Performance – Education and Public Outreach – The Solar System – Stellar Populations – Milky Way and Local Volume Structure – The Transient and Variable Universe – Galaxies – Active Galactic Nuclei – Supernovae – Strong Lenses – Large-Scale Structure – Weak Lensing – Cosmological Physics Version 2.0, arXiv:0912.0201 http://www.lsst.org/lsst/scibook

15 Transient events

16 Cosmic transients Example: orphan afterglows

17 Supernovae

18 Supernovae of Type Ia Example lightcurves from the MAIN survey

19 Supernovae of Type Ia Example lightcurves from the DEEP survey

20 SN Ia photometric redshifts (from simulations) σ z =0.007 σ μ =0.16

21 SN cosmology: BAO & D l Example: equation of state w(z)=w 0 +w a xz(1+z) -1

22 Large scale structure Total: ~10 10 galaxies 4x10 9 „golden“ galaxies with i < 25 mag

23 Large scale structure Total: ~10 10 galaxies 4x10 9 „golden“ galaxies with i < 25 mag Photometric redshift errors: σ z ≈σ 0 (1+z) with σ 0 ≈0.02

24 Large scale structure Total: ~10 10 galaxies 4x10 9 „golden“ galaxies with i < 25 mag Photometric redshift errors: σ z ≈σ 0 (1+z) with σ 0 ≈0.02 Power-weighted eff. volume:

25 Strong lensing Galaxy-galaxy lensing from the CFHTLS 4 deg 2 CFHTLS ⇔ LSST 10 yr stack 170deg 2 CFHTLS ⇔ single visit Galaxy-Galaxy lenses: ~10 4 (compared to 15 from CFHTLS) Galaxy-lensed Quasars: ~2600 (compared to 32 from SDSS) Galaxy lensed Supernovae: 330 (none identified so far) Cluster lensed galaxies: ~10 3 (≥1 multiple image system)

26 Strong lensing Example application: Time delay & H 0 e.g. S. Suyu et al., ApJ 2010 ⇒ H 0 =70.6±3.1 kms -1 Mpc -1 Fassnacht et al 2002 Today: individual objectsLSST: ~ several hundred obj

27 Weak lensing Example: lensing power spectra from galaxies Multiple images of same field with different instrument roation, dither position, seeing,..., reduces systematics errors z<0.7 0.7<z<1.2 z>1.2

28 Cosmological parameters Example: equation of state w(z)=w 0 +w a z(1+z) -1

29 Neutrino mass constraints factor 4 improvement over Planck alone m total ≥ 0.05 eV

30 * assuming Planck priors; Neutrino mass constraints * - total versus lightest neutrino mass factor 4 improvement over Planck alone

31 Project Timeline

32 Conclusion & Outlook LSST is ranked first in the 2010 decadal survey with a strong recommendation for immediate submission of funding application to NSF & DOE Strong US collaboration has formed, France joined but no German groups involved (yet) Extraordinary science opportunities for astronomy, cosmology & physics Very detailed, up-to-date information on the project: http://www.lsst.org/lsst/scibook

33 Backup

34


Download ppt "Ultimate wide field Imaging: The Large Synoptic Sky Survey Marek Kowalski Physikalisches Institut Universität Bonn."

Similar presentations


Ads by Google