Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg.

Similar presentations


Presentation on theme: "Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg."— Presentation transcript:

1 Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg

2 Overview Definitions  Sparsity and Meagerness Bounds Show these bounds very loose Define Informational Meagerness  Based on Informational Dominance Show that it can be slightly loose

3 M1M1 M2M2 M1⊕M2M1⊕M2 S(1)S(2) T(2)T(1) k-pairs Communication Problem

4 Concurrent Rate Source i desires communication rate d i. Rate r is achievable if rate vector [ rd 1, rd 2, …, rd k ] is achievable Rate region interval of R + Def: “Network coding rate” (or NCR) := sup { r : r is achievable }

5 M1M1 M2M2 M1⊕M2M1⊕M2 S(1)S(2) T(2)T(1) k-pairs Communication Problem d 1 = d 2 = 1 c e = 1  e  E Rate 1 achievable

6 Upper bounds on rate [Classical]: Sparsity bound for multicommodity flows [CT91]: General bound for multi-commodity information networks [B02]: Application of CT91 to directed network coding instances; equivalent to sparsity. [KS03]: Bound for undirected networks with arbitrary two-way channels [HKL04]: Meagerness [SYC03], [HKL05]: LP bound [KS05]: Bound based on iterative d-separation

7 Vertex-Sparsity Def: For U  V, VS (G) := min U  V VS (U) Claim: NCR  VS (G) Capacity of edges crossing between U and U Demand of commodities separated by U VS (U) :=

8 Edge-Sparsity Def: For A  E, ES (G) = min A  E ES (A) Claim: Max-Flow  ES (G) But: Sometimes NCR > ES (G) Capacity of edges in A Demand of commodities separated in G\A ES (A) :=

9 NCR > Edge-Sparsity S(1) S(2) T(2) T(1) Cut {e} separates S(1) and S(2)  ES ({e}) = 1/2 But rate 1 achievable! e

10 Meagerness Def: For A  E and P  [k], A isolates P if for all i,j  P, S(i) and T(j) disconnected in G\A. M (G) := min A  E M (A) Claim: NCR  M (G) Capacity of edges in A Demand of commodities in P M (A) := min P isolated by A

11 Meagerness & Vtx-Sparsity are weak Thm: M ( G n ) = VS ( G n ) =  (1), but NCR  1/n. S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 h3h3 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n :=

12 A Proof Tool Def: Let A,B  E. B is downstream of A if B disconnected from sources in G\A. Notation: A  B. Claim: If A  B then H(A)  H(A,B). Pf: Because S  A  B form Markov chain.

13 Proof: {g n }  {g n,T(1),h 1 } S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 h3h3 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n := Lemma: NCR  1/n

14 Proof: {g n }  {g n,T(1),h 1 }  {S(1),f 1,g 1,h 1 } S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 h3h3 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n := Lemma: NCR  1/n

15 Proof: {g n }  {g n,T(1),h 1 }  {S(1),f 1,g 1,h 1 }  {S(1),f 1,T(2),h 2 } S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 h3h3 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n := Lemma: NCR  1/n

16 Proof: {g n }  {g n,T(1),h 1 }  {S(1),f 1,g 1,h 1 }  {S(1),f 1,T(2),h 2 }  {S(1),S(2),f 2,g 2,h 2 } S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 h3h3 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n := Lemma: NCR  1/n

17 h3h3 Proof: {g n }  {g n,T(1),h 1 }  {S(1),f 1,g 1,h 1 }  {S(1),f 1,T(2),h 2 }  {S(1),S(2),f 2,g 2,h 2 }  {S(1),S(2),f 2,T(3),h 3 } S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n := Lemma: NCR  1/n

18 Proof: {g n }  …  {S(1),S(2),…,S(n)} Thus 1  H(g n )  H(S(1),…,S(n)) = n ∙ r So 1/n  r S(3)S(2)S(n)S(n-1) f2f2 f n-1 f3f3 S(1) f1f1 T(1)T(n-1)T(n)T(3) h n-1 h1h1 h3h3 T(2) h2h2 g2g2 g3g3 g1g1 g n-1 gngn G n := Lemma: NCR  1/n

19 Towards a stronger bound Our focus: cut-based bounds  Given A  E, we want to infer that H(A)  H(A,P) where P  {S(1),…,S(k)} Meagerness uses Markovicity: (sources in P)  A  (sinks in P) Markovicity sometimes not enough…

20 Informational Dominance Def: A dominates B if information in A determines information in B in every network coding solution. Denoted A B. Trivially implies H(A)  H(A,B) How to determine if A dominates B?  [HKL05] give combinatorial characterization and efficient algorithm to test if A dominates B. i 

21 Informational Meagerness Def: For A  E and P  {S(1),…,S(k)}, A informationally isolates P if A  P P. iM (A) = min P for P informationally isolated by A iM (G) = min A  E iM (A) Claim: NCR  iM (G). i  Capacity of edges in A Demand of commodities in P

22 iMeagerness Example “Obviously” NCR = 1. But no two edges disconnect t 1 and t 2 from both sources! s1s1 s2s2 t1t1 t2t2

23 iMeagerness Example After removing A, still a path from s 2 to t 1 ! Cut A s1s1 s2s2 t1t1 t2t2

24 Informational Dominance Example s1s1 s2s2 t1t1 t2t2 Our characterization shows A {t 1,t 2 } H(A)  H(t 1,t 2 ) and iM (G) = 1 Cut A i 

25

26 A bad example: H n Thm: iMeagerness gap of H n is  (log |V|) s(00) s(0) s(01) s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) r(00)r(01)r(10)r(11) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) Capacity 2 -n H2H2

27 s(00) s(0) s(01)s(10)s(11) s(1) s(ε) T n = Binary tree of depth n Source S(i)  i  T n

28 s(00) s(0) s(01)s(10)s(11) s(1) s(ε) T n = Binary tree of depth n Source S(i)  i  T n Sink T(i)  i  T n t(00) t(0) t(01)t(10)t(11) t(1) t(ε)

29 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) q(00) q(01) q(10) q(11) Nodes q(i) and r(i) for every leaf i of T n

30 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) q(00) q(01) q(10) q(11) Complete bip. graph between sources and q’s

31 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) q(00) q(01) q(10) q(11) (r(a),t(b)) if b ancestor of a in T n

32 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) (s(a),t(b)) if a and b cousins in T n

33 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) Capacity 2 -n All edges have capacity  except (q(i),r(i))

34 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) t(00) t(0) t(01)t(10)t(11) t(1) t(ε) Capacity 2 -n Demand of source at depth i is 2 -i

35 Properties of H n Lemma: iM ( H n ) =  (1) Lemma: NCR < 1/n Corollary: iMeagerness gap is n=  (log |V|)

36 Properties of H n Lemma: iM ( H n ) =  (1) Lemma: NCR < 1/n Corollary: iMeagerness gap is n=O(log |V|) We will prove this

37 Entropy moneybags  i.e., sets of RVs Entropy investments  Buying sources and edges, putting into moneybag  Loans may be necessary Profit  Via Downstreamness or Info. Dominance  Earn new sources or edges for moneybag Corporate mergers  Via Submodularity  New Investment Opportunities and Debt Consolidation Debt repayment Proof Ingredients

38 Submodularity of Entropy Claim: Let A and B be sets of RVs. Then H(A)+H(B)  H(A  B)+H(A  B) Pf: Equivalent to I( X; Y | Z )  0.

39 Proof: Two entropy moneybags:  F(a) = { S(b) : b not an ancestor of a }  E(a) = F(a)  { (q(b),r(b)) : b is descendant of a } Lemma: NCR < 1/n

40 Entropy Investment Let a be a leaf of T n Take a loan and buy E(a). r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) a

41 t(00) Earning Profit Claim: E(a)  T(a) Pf: Cousin-edges not from ancestors. Vertex r(00) blocked by E(a). r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) a

42 Earning Profit Claim: E(a)  T(a) Result: E(a) gives free upgrade to E(a)  {S(a)}. Profit = S(a). r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) a t(00)

43 q(00) q(01) r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) E(a L )  {S(a L )} r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(10) q(11) E(a R )  {S(a R )} aLaL aRaR

44 q(00) q(01) r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) (E(a L )  {S(a L )})  (E(a R )  {S(a R )}) r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(10) q(11) (E(a L )  {S(a L )})  (E(a R )  {S(a R )}) Applying submodularity

45 r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(00) q(01) q(10) q(11) (E(a L )  {S(a L )})  (E(a R )  {S(a R )}) New Investment Union term has more edges  Can use downstreamness or informational dominance again! (E(a L )  {S(a L )})  (E(a R )  {S(a R )}) = E(a) a

46 Debt Consolidation Intersection term has only sources  Cannot earn new profit. Used for later “debt repayment” (E(a L )  {S(a L )})  (E(a R )  {S(a R )}) = F(a) q(00) q(01) r(00)r(01)r(10)r(11) s(00) s(0) s(01)s(10)s(11) s(1) s(ε) q(10) q(11) (E(a L )  {S(a L )})  (E(a R )  {S(a R )}) a

47 What have we shown? Let a L,a R be sibling leaves; a is their parent. H(E(a L )) + H(E(a R ))  H(E(a)) + H(F(a)) Iterate and sum over all nodes in tree where r is the root. Note: E(v) = F(v)  {(q(v),r(v))} when v is a leaf

48 Debt Repayment Claim: Pf: Simple counting argument. 

49 Finishing up  = 1 =  Rate < 1/n = (where α = rate of solution)


Download ppt "Tighter Cut-Based Bounds for k-pairs Communication Problems Nick Harvey Robert Kleinberg."

Similar presentations


Ads by Google