Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sameer Shende, Allen D. Malony, and Alan Morris {sameer, malony, Department of Computer and Information Science NeuroInformatics.

Similar presentations


Presentation on theme: "Sameer Shende, Allen D. Malony, and Alan Morris {sameer, malony, Department of Computer and Information Science NeuroInformatics."— Presentation transcript:

1 Sameer Shende, Allen D. Malony, and Alan Morris {sameer, malony, amorris}@cs.uoregon.edu Department of Computer and Information Science NeuroInformatics Center University of Oregon TAU Performance Tools

2 2 Acknowledgements  Pete Beckman, ANL  Suravee Suthikulpanit, U. Oregon  Aroon Nataraj, U. Oregon  Katherine Riley, ANL

3 3 Outline  Overview of features  Instrumentation  Measurement  Analysis tools  Linux kernel profiling with TAU

4 4 TAU Performance System Framework  Tuning and Analysis Utilities  Performance system framework for scalable parallel and distributed high- performance computing  Targets a general complex system computation model  nodes / contexts / threads  Multi-level: system / software / parallelism  Measurement and analysis abstraction  Integrated toolkit for performance instrumentation, measurement, analysis, and visualization  Portable, configurable performance profiling/tracing facility  Open software approach  University of Oregon, LANL, FZJ Germany  http://www.cs.uoregon.edu/research/paracomp/tau http://www.cs.uoregon.edu/research/paracomp/tau

5 5 TAU Performance System Architecture Jumpshot Paraver paraprof

6 6 TAU Instrumentation Approach  Support for standard program events  Routines  Classes and templates  Statement-level blocks  Support for user-defined events  Begin/End events (“user-defined timers”)  Atomic events (e.g., size of memory allocated/freed)  Selection of event statistics  Support definition of “semantic” entities for mapping  Support for event groups  Instrumentation optimization (eliminate instrumentation in lightweight routines)

7 7 TAU Instrumentation  Flexible instrumentation mechanisms at multiple levels  Source code  manual (TAU API, TAU Component API)  automatic C, C++, F77/90/95 (Program Database Toolkit (PDT)) OpenMP (directive rewriting (Opari), POMP spec)  Object code  pre-instrumented libraries (e.g., MPI using PMPI)  statically-linked and dynamically-linked  Executable code  dynamic instrumentation (pre-execution) (DynInstAPI)  virtual machine instrumentation (e.g., Java using JVMPI)  Proxy Components

8 8 Using TAU – A tutorial  Configuration  Instrumentation  Manual  MPI – Wrapper interposition library  PDT- Source rewriting for C,C++, F77/90/95  OpenMP – Directive rewriting  Component based instrumentation – Proxy components  Binary Instrumentation  DyninstAPI – Runtime instrumentation/Rewriting binary  Java – Runtime instrumentation  Python – Runtime instrumentation  Measurement  Performance Analysis

9 9 TAU Measurement System Configuration  configure [OPTIONS]  {-c++=, -cc= } Specify C++ and C compilers  {-pthread, -sproc}Use pthread or SGI sproc threads  -openmpUse OpenMP threads  -jdk= Specify Java instrumentation (JDK)  -opari= Specify location of Opari OpenMP tool  -papi= Specify location of PAPI  -pdt= Specify location of PDT  -dyninst= Specify location of DynInst Package  -mpi[inc/lib]= Specify MPI library instrumentation  -shmem[inc/lib]= Specify PSHMEM library instrumentation  -python[inc/lib]= Specify Python instrumentation  -epilog= Specify location of EPILOG  -vtf= Specify location of VTF3 trace package  -arch= Specify architecture explicitly (bgl,ibm64,ibm64linux…)

10 10 TAU Measurement System Configuration  configure [OPTIONS]  -TRACEGenerate binary TAU traces  -PROFILE (default) Generate profiles (summary)  -PROFILECALLPATHGenerate call path profiles  -PROFILEPHASEGenerate phase based profiles  -PROFILEMEMORYTrack heap memory for each routine  -MULTIPLECOUNTERSUse hardware counters + time  -COMPENSATECompensate timer overhead  -CPUTIMEUse usertime+system time  -PAPIWALLCLOCKUse PAPI’s wallclock time  -PAPIVIRTUALUse PAPI’s process virtual time  -SGITIMERSUse fast IRIX timers  -LINUXTIMERSUse fast x86 Linux timers

11 11 TAU Measurement Configuration – Examples ./configure –arch=bgl –mpi –pdt=/usr/pdtoolkit-3.3.1 -pdt_c++=xlC  Use IBM BlueGene/L arch, XL compilers, MPI and PDT  Builds /bgl/bin/tau_instrumentor (executes on the front-end) and /bgl/lib/Makefile.tau-mpi-pdt stub ./configure –TRACE –PROFILE –arch=bgl –mpi  Enable both TAU profiling and tracing ./configure -c++=xlC_r -cc=xlc_r -mpi –pdt=/home/pdtoolkit-3.3.1 –TRACE –vtf=/usr/vtf3-1.33  Use IBM’s xlC_r and xlc_r compilers with VTF3, PDT, MPI packages and multiple counters for measurements on the ppc64 front-end node  Typically configure multiple measurement libraries

12 12 TAU Performance Framework Interfaces  PDT [U. Oregon, LANL, FZJ] for instrumentation of C++, C99, F95 source code  PAPI [UTK] & PCL[FZJ] for accessing hardware performance counters data  DyninstAPI [U. Maryland, U. Wisconsin] for runtime instrumentation  KOJAK [FZJ, UTK]  Epilog trace generation library  CUBE callgraph visualizer  Opari OpenMP directive rewriting tool  Vampir/Intel® Trace Analyzer [Pallas/Intel]  VTF3 trace generation library for Vampir [TU Dresden] (available from TAU website)  Paraver trace visualizer [CEPBA]  Jumpshot-4 trace visualizer [MPICH, ANL]  JVMPI from JDK for Java program instrumentation [Sun]  Paraprof profile browser/PerfDMF database supports:  TAU format  Gprof [GNU]  HPM Toolkit [IBM]  MpiP [ORNL, LLNL]  Dynaprof [UTK]  PSRun [NCSA]  PerfDMF database can use Oracle, MySQL or PostgreSQL (IBM DB2 support planned)

13 13 Memory Profiling in TAU  Configuration option –PROFILEMEMORY  Records global heap memory utilization for each function  Takes one sample at beginning of each function and associates the sample with function name  Independent of instrumentation/measurement options selected  No need to insert macros/calls in the source code  User defined atomic events appear in profiles/traces

14 14 Memory Profiling in TAU Flash2 code profile on IBM BlueGene/L [MPI rank 0]

15 15 Memory Profiling in TAU  Instrumentation based observation of global heap memory (not per function)  call TAU_TRACK_MEMORY()  Triggers one sample every 10 secs  call TAU_TRACK_MEMORY_HERE()  Triggers sample at a specific location in source code  call TAU_SET_INTERRUPT_INTERVAL(seconds)  To set inter-interrupt interval for sampling  call TAU_DISABLE_TRACKING_MEMORY()  To turn off recording memory utilization  call TAU_ENABLE_TRACKING_MEMORY()  To re-enable tracking memory utilization

16 16 Profile Measurement – Three Flavors  Flat profiles  Time (or counts) spent in each routine (nodes in callgraph).  Exclusive/inclusive time, no. of calls, child calls  E.g,: MPI_Send, foo, …  Callpath Profiles  Flat profiles, plus  Sequence of actions that led to poor performance  Time spent along a calling path (edges in callgraph)  E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send when called by f2, when f2 is called by f1, when it is called by main. Depth of this callpath = 4 (TAU_CALLPATH_DEPTH environment variable)  Phase based profiles  Flat profiles, plus  Flat profiles under a phase (nested phases are allowed)  Default “main” phase has all phases and routines invoked outside phases  Supports static or dynamic (per-iteration) phases  E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase

17 17 TAU Timers and Phases  Static timer  Shows time spent in all invocations of a routine (foo)  E.g., “foo()” 100 secs, 100 calls  Dynamic timer  Shows time spent in each invocation of a routine  E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively)  Static phase  Shows time spent in all routines called (directly/indirectly) by a given routine (foo)  E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100 secs were spent in MPI_Send() when it was called by foo.  Dynamic phase  Shows time spent in all routines called by a given invocation of a routine.  E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in MPI_Send when it was called by the 4 th invocation of foo.

18 18 Flat Profile – Pprof Profile Browser  Intel Linux cluster  F90 + MPICH  Profile - Node - Context - Thread  Events - code - MPI

19 19 Flat Profile – TAU’s Paraprof Profile Browser

20 20 Callpath Profile

21 21 Callpath Profile - parent/node/child view

22 22 Callpath Profiling

23 23 Phase Profile – Dynamic Phases In 51 st iteration, time spent in MPI_Waitall was 85.81 secs Total time spent in MPI_Waitall was 4137.9 secs across all 92 iterations

24 24 Using TAU  Install TAU % configure ; make clean install  Instrument application  TAU Profiling API  Typically modify application makefile  include TAU’s stub makefile, modify variables  Set environment variables  directory where profiles/traces are to be stored  name of merged trace file, retain intermediate trace files, etc.  Execute application % mpirun –np a.out;  Analyze performance data  paraprof, vampir/traceanalyzer, pprof, paraver …

25 25 AutoInstrumentation using TAU_COMPILER  $(TAU_COMPILER) stub Makefile variable in 2.14+ release  Invokes PDT parser, TAU instrumentor, compiler through tau_compiler.sh shell script  Requires minimal changes to application Makefile  Compilation rules are not changed  User adds $(TAU_COMPILER) before compiler name  F90=mpxlf90 Changes to F90= $(TAU_COMPILER) mpxlf90  Passes options from TAU stub Makefile to the four compilation stages  Uses original compilation command if an error occurs

26 26 TAU_COMPILER – Improving Integration in Makefiles OLD include /usr/tau-2.14/include/Makefile CXX = mpCC F90 = mpxlf90_r PDTPARSE = $(PDTDIR)/ $(PDTARCHDIR)/bin/cxxparse TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/ bin/tau_instrumentor CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE) LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS) -lm OBJS = f1.o f2.o f3.o … fn.o app: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(PDTPARSE) $< $(TAUINSTR) $*.pdb $< -o $*.i.cpp –f select.dat $(CC) $(CFLAGS) -c $*.i.cpp NEW include /usr/tau-2.14/include/Makefile CXX = $(TAU_COMPILER) mpCC F90 = $(TAU_COMPILER) mpxlf90_r CFLAGS = LIBS = -lm OBJS = f1.o f2.o f3.o … fn.o app: $(OBJS) $(CXX) $(LDFLAGS) $(OBJS) -o $@ $(LIBS).cpp.o: $(CC) $(CFLAGS) -c $<

27 27 TAU_COMPILER Options  Optional parameters for $(TAU_COMPILER):  -optVerboseTurn on verbose debugging messages  -optPdtDir="" PDT architecture directory. Typically $(PDTDIR)/$(PDTARCHDIR)  -optPdtF95Opts="" Options for Fortran parser in PDT (f95parse)  -optPdtCOpts="" Options for C parser in PDT (cparse). Typically $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)  -optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)  -optPdtF90Parser="" Specify a different Fortran parser. For e.g., f90parse instead of f95parse  -optPdtUser="" Optional arguments for parsing source code  -optPDBFile="" Specify [merged] PDB file. Skips parsing phase.  -optTauInstr="" Specify location of tau_instrumentor. Typically $(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor  -optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor  -optTau="" Specify options for tau_instrumentor  -optCompile="" Options passed to the compiler. Typically $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)  -optLinking="" Options passed to the linker. Typically $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)  -optNoMpi Removes -l*mpi* libraries during linking (default)  -optKeepFiles Does not remove intermediate.pdb and.inst.* files e.g., OPT=-optTauSelectFile=select.tau –optPDBFile=merged.pdb F90 = $(TAU_COMPILER) $(OPT) blrts_xlf90

28 28 Program Database Toolkit (PDT)  Program code analysis framework  develop source-based tools  High-level interface to source code information  Integrated toolkit for source code parsing, database creation, and database query  Commercial grade front-end parsers  Portable IL analyzer, database format, and access API  Open software approach for tool development  Multiple source languages  Implement automatic performance instrumentation tools  tau_instrumentor

29 29 Program Database Toolkit Component source/ Library C / C++ parser Fortran 77/90/95 parser C / C++ IL analyzer Fortran 77/90/95 IL analyzer Program Database Files IL DUCTAPE tau_pg SILOON CHASM TAU_instr Proxy Component Application component glue C++ / F90 interoperability Automatic source instrumentation

30 30 TAU Tracing Enhancements  Configure TAU with -TRACE –vtf=dir option % configure –TRACE –vtf= … Generates tau_merge, tau2vtf tools in /ppc64/bin dir % configure -arch=bgl -TRACE -pdt= -pdt_c++=xlC -mpi Generates library in /bgl/lib directory  Execute application % mpirun -partition Pgeneral2 -np 16 -cwd `pwd` -exe `pwd`/  Merge and convert trace files to VTF3 format % tau_merge *.trc app.trc % tau2vtf app.trc tau.edf app.vpt.gz % traceanalyzer foo.vpt.gz

31 31 Intel ® Traceanalyzer (Vampir) Global Timeline

32 32 Visualizing TAU Traces with Counters/Samples

33 33 Visualizing TAU Traces with Counters/Samples

34 34 ParaProf TAU Performance Data Management Framework Performance analysis programs PerfDMF Java API... JDBC PostgreSQL Oracle MySQL Database Profile meta-data Raw performance data Hpmtoolkit Psrun Dynaprof mpiP Gprof … … C API…

35 35 Paraprof Manager – Performance Database

36 36 Paraprof Scalable Histogram View

37 37 MPI_Barrier Histogram over 16K cpus of BG/L

38 38 Paraprof Profile Browser

39 39 Paraprof – Full Callgraph View

40 40 Paraprof – Highlight Callpaths

41 41 Paraprof – Callgraph View (Zoom In +/Out -)

42 42 Paraprof – Callgraph View (Zoom In +/Out -)

43 43 Paraprof - Function Data Window

44 44 KOJAK’s CUBE [UTK, FZJ] Browser

45 45 Linux Kernel Profiling using TAU  Identifying points in kernel source for instrumentation  Developing TAU’s kernel profiling API  Kernel compiled with TAU instrumentation  Maintains per process performance data for each kernel routine  Performance data accessible via /proc filesystem  Instrumented application maintains data in userspace  Performance data from application and kernel merged at program termination

46 46 Kernel Profiling Issues for IBM BlueGene/L  I/O node kernel - Linux kernel approach  Compute node kernel:  No daemon processes  Single address space  Single performance database & callstack across user/kernel  Keeps track of one process only (optimization)  Instrumented compute node kernel

47 47 TAU Performance System Status (v 2.14.2.1)  Computing platforms (selected)  IBM BGL, AIX, pSeries Linux, SGI Origin, Cray RedStorm, T3E / SV-1 / X1, HP (Compaq) SC (Tru64), Sun, Hitachi SR8000, NEC SX-5/6, Linux clusters (IA- 32/64, Alpha, PPC, PA-RISC, Power, Opteron), Apple (G4/5, OS X), Windows,…  Programming languages  C, C++, Fortran 77/90/95, HPF, Java, OpenMP, Python  Thread libraries  pthreads, SGI sproc, Java,Windows, OpenMP  Compilers (selected)  IBM, Intel, Intel KAI, PGI, GNU, Fujitsu, Sun, NAG, Microsoft, SGI, Cray, HP, NEC, Absoft, Lahey

48 48 Support Acknowledgements  Department of Energy (DOE)  Office of Science contracts  University of Utah DOE ASCI Level 1 sub-contract  DOE ASC/NNSA Level 3 contract  NSF Software and Tools for High-End Computing Grant  Research Centre Juelich  John von Neumann Institute for Computing  Dr. Bernd Mohr  Los Alamos National Laboratory


Download ppt "Sameer Shende, Allen D. Malony, and Alan Morris {sameer, malony, Department of Computer and Information Science NeuroInformatics."

Similar presentations


Ads by Google