Download presentation
Presentation is loading. Please wait.
1
Electron microscopy analysis of nm- sized particles and segregations Frank Krumeich and Reinhard Nesper ETH Zurich, Laboratory of Inorganic Chemistry krumeich@inorg.chem.ethz.ch www.microscopy.ethz.ch Electron microscopy: valuable tools for the characterization of nanomaterials Scanning transmission electron microscopy STEM - HAADF-STEM - Combination with spectroscopic methods Comparison of methods
2
Electron Microscopy Methods for the Characterization of Nanomaterials (Example: Vanadium Oxide Nanotubes) SEM: characterization of tubular morphology Cross-sections of VO x nanotubes: TEM and elemental maps obtained by electron spectroscopic imaging V map C map TEM: characterization of the wall structure EELS: composition
3
STEM detectors BF Bright Field detector ADF Annular Dark Field detector (Θ = 0.5 - 3°) Scanning Transmission Electron Microscopy (STEM) HAADF High Angle Annular Dark Field detector (Θ > 3°)
4
Scattering of Electrons at an Atom Strong Coulomb interaction of an electron with the nucleus scattering into high angles or even backwards High angle annular dark field detector (HAADF-STEM) atomic-number (Z) contrast:
5
HAADF-STEM of Small Metal Particles 50 nm 10 nm Au particles (bright contrast) on titania (Z contrast)
6
HAADF-STEM and EDXS: Point Analyses Pd/Pt particles on alumina Pt Pd Pt Cu Al O C Pt Pd Pt Cu Al O C
7
HAADF-STEM and EDXS WO 3 segregations in the oxidation product of Nb 4 W 13 O 47 (T ox =1000°C) Krumeich, Nesper, J. Solid State Chem. 179 (2006) 1658 matrix segregation
8
HAADF-STEM of Nb 4 W 13 O 49 HAADF-STEM: Elemental Distribution Single-crystal X-ray structure of Nb 7 W 10 O 47 ca. 80% Nb 100% W P2 1 2 1 2 a=12.26, b=36.63, c=3.95 Å (Krumeich, Wörle, Hussain, J. Solid State Chem. 149 (2000) 428)
9
High-Resolution Electron Microscopy WO 3 segregations in a bronze-type Nb-W oxide HRTEM 2 nm HAADF-STEM
10
Comparison: HRTEM ↔ HAADF-STEM HRTEMHAADF-STEM basics interference of coherently scattered electron waves incoherent scattering recording - time parallel 0.5 – 2 s serial 5-20 s (→ problems) cathodeLaB 6 (or FEG)FEG resolutionca. 2 Å obtainable information atomic positions (and elemental distribution) atomic positions and elemental distribution image interpretation comparison with simulations Scherzer defocus: atom columns dark direct atom columns always bright; intensity ~Z 2
11
Analytical Electron Microscopy Electron-matter interactions are mostly elastic high electron doses necessary Long measuring times high sample stability and absence of drift Ionization edges occur at different energies and are of different shape not all methods are equally suitable for all elements Qualitative and quantitative information about the composition: EDXS, EELS Bonding, coordination, interatomic distances: Fine structure in EELS (ELNES, EXEFS) Spatially resolved information about composition: 1. STEM + EDXS and/or EELS 2. ESI Benefits Limitations
12
Transmission Electron Microscope Acknowledgements EMEZ: Electron Microscopy Center, ETH Hönggerberg www.emez.ethz.ch Tecnai F30 U acc = 300kV, field emission cathode (FEG) SuperTwin lens: C s = 1.15 mm, point resolution d < 0.2 nm Equipment: post-column imaging filter, STEM, energy-dispersive X-ray spectrometer Methods: TEM, HRTEM, STEM, ED, EDXS, EELS, ESI, EFTEM krumeich@inorg.chem.ethz.ch www.microscopy.ethz.ch Post-column filter
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.