Download presentation
Presentation is loading. Please wait.
1
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Cost of Capital Chapter 12
2
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.1 Chapter Outline 1. The Cost of Capital: Some Preliminaries 2. The Cost of Equity and Preferred Stock 3. The Costs of Debt 4. The Weighted Average Cost of Capital 5. Divisional and Project Costs of Capital
3
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.2 1. Required Return and Cost of Capital The return to an investor is the same as the cost to the company Knowing our cost of capital can help us determine our required return for capital budgeting projects The required return is the same as the appropriate discount rate and is based on the risk of the cash flows We need to earn at least the required return to compensate our investors for the financing they have provided
4
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.3 2.1 Cost of Equity The cost of equity is the return required by equity investors given the risk of the cash flows from the firm There are two major methods for determining the cost of equity Dividend growth model SML or CAPM
5
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.4 The Dividend Growth Model Approach Start with the dividend growth model formula and rearrange to solve for R E
6
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.5 Dividend Growth Model Example Suppose that your company is expected to pay a dividend of $1.50 per share next year. There has been a steady growth in dividends of 5.1% per year and the market expects that to continue. The current price is $25. What is the cost of equity?
7
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.6 Advantages and Disadvantages of Dividend Growth Model Advantage – easy to understand and use Disadvantages Only applicable to companies currently paying dividends Not applicable if dividends aren’t growing at a reasonably constant rate Extremely sensitive to the estimated growth rate – an increase in g of 1% increases the cost of equity by 1% Does not explicitly consider risk
8
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.7 The SML Approach Use the following information to compute our cost of equity Risk-free rate, R f Market risk premium, E(R M ) – R f Systematic risk of asset,
9
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.8 Example - SML Suppose your company has an equity beta of.58 and the current risk-free rate is 6.1%. If the expected market risk premium is 8.6%, what is your cost of equity capital? R E = 6.1 +.58(8.6) = 11.1% Since we came up with similar numbers using both the dividend growth model and the SML approach, we should feel pretty good about our estimate
10
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.9 Advantages and Disadvantages of SML Advantages Explicitly adjusts for systematic risk Applicable to all companies, as long as we can compute beta Disadvantages Have to estimate the expected market risk premium, which does vary over time Have to estimate beta, which also varies over time We are relying on the past to predict the future, which is not always reliable
11
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.10 Example – Cost of Equity Suppose our company has a beta of 1.5. The market risk premium is expected to be 9% and the current risk-free rate is 6%. We have used analysts’ estimates to determine that the market believes our dividends will grow at 6% per year and our last dividend was $2. Our stock is currently selling for $15.65. What is our cost of equity? Using SML: R E = 6% + 1.5(9%) = 19.5% Using DGM: R E = [2(1.06) / 15.65] +.06 = 19.55%
12
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.11 2.2 Cost of Preferred Stock Reminders Preferred generally pays a constant dividend every period Dividends are expected to be paid every period forever Preferred stock is a perpetuity, so we take the perpetuity formula, rearrange and solve for R P R P = D / P 0
13
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.12 Cost of Preferred Stock - Example Your company has preferred stock that has an annual dividend of $3. If the current price is $25, what is the cost of preferred stock? R P = 3 / 25 = 12%
14
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.13 3. Cost of Debt The cost of debt is the required return on company’s debt We usually focus on the cost of long-term debt or bonds The required return is best estimated by computing the yield-to-maturity on the existing debt We may also use estimates of current rates based on the bond rating we expect when we issue new debt The cost of debt is NOT the coupon rate
15
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.14 Cost of Debt Example Suppose we have a bond issue currently outstanding that has 25 years left to maturity. The coupon rate is 9% and coupons are paid semiannually. The bond is currently selling for $908.72 per $1000 bond. What is the cost of debt? N = 50; PMT = 45; FV = 1000; PV = -908.75; CPT I/Y = 5%; YTM = 5(2) = 10%
16
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.15 4. Weighted Average Cost of Capital We can use the individual costs of capital that we have computed to get our “average” cost of capital for the firm. This “average” is the required return on our assets, based on the market’s perception of the risk of those assets The weights are determined by how much of each type of financing that we use
17
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.16 Capital Structure Weights Notation E = market value of equity = # outstanding shares times price per share D = market value of debt = # outstanding bonds times bond price V = market value of the firm = D + E Weights w E = E/V = percent financed with equity w D = D/V = percent financed with debt
18
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.17 Example – Capital Structure Weights Suppose you have a market value of equity equal to $500 million and a market value of debt equal to $475 million. What are the capital structure weights? V = 500 million + 475 million = 975 million w E = E/D = 500 / 975 =.5128 = 51.28% w D = D/V = 475 / 975 =.4872 = 48.72%
19
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.18 Taxes and the WACC We are concerned with after-tax cash flows, so we need to consider the effect of taxes on the various costs of capital Interest expense reduces our tax liability This reduction in taxes reduces our cost of debt After-tax cost of debt = R D (1-T C ) Dividends are not tax deductible, so there is no tax impact on the cost of equity WACC = w E R E + w D R D (1-T C )
20
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.19 Taxes and the WACC $100 Borrow $100, 10% interest rate, tax rate=35% $110 Tax saving: 10*35%=$3.5 Total: 110-3.5=$106.5
21
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.20 Extended Example – WACC - I Equity Information Market value of equity is $4 billion Beta = 1.15 Market risk premium = 9% Risk-free rate = 5% Debt Information Market value of bonds is $1.1 billion Current price = $1100 Coupon rate = 9%, semiannual coupons 15 years to maturity Tax rate = 40%
22
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.21 Extended Example – WACC - II What is the cost of equity? R E = 5 + 1.15(9) = 15.35% What is the cost of debt? N = 30; PV = -1100; PMT = 45; FV = 1000; CPT I/Y = 3.9268 R D = 3.927(2) = 7.854% What is the after-tax cost of debt? R D (1-T C ) = 7.854(1-.4) = 4.712%
23
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.22 Extended Example – WACC - III What are the capital structure weights? E = 4 billion D = 1.1 billion V = 4 + 1.1 = 5.1 billion w E = E/V = 4 / 5.1 =.7843 w D = D/V = 1.1 / 5.1 =.2157 What is the WACC? WACC =.7843(15.35%) +.2157(4.712%) = 13.06%
24
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.23 Table 12.1
25
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.24 5. Divisional and Project Costs of Capital Using the WACC as our discount rate is only appropriate for projects that are the same risk as the firm’s current operations If we are looking at a project that is NOT the same risk as the firm, then we need to determine the appropriate discount rate for that project Divisions also often require separate discount rates
26
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.25 Using WACC for All Projects - Example What would happen if we use the WACC for all projects regardless of risk? Assume the WACC = 15% ProjectRequired ReturnIRR A20%17% B15%18% C10%12%
27
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.26 Pure Play Approach Find one or more companies that specialize in the product or service that we are considering Compute the beta for each company Take an average Use that beta along with the CAPM to find the appropriate return for a project of that risk Often difficult to find pure play companies
28
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.27 Subjective Approach Consider the project’s risk relative to the firm overall If the project is more risky than the firm, use a discount rate greater than the WACC If the project is less risky than the firm, use a discount rate less than the WACC You may still accept projects that you shouldn’t and reject projects you should accept, but your error rate should be lower than not considering differential risk at all
29
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.28 Subjective Approach - Example Risk LevelDiscount Rate Very Low RiskWACC – 8% Low RiskWACC – 3% Same Risk as FirmWACC High RiskWACC + 5% Very High RiskWACC + 10%
30
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 12.29 Review Questions 2. What are the two approaches for computing the cost of equity? 3. How to compute the cost of debt. 4. How to compute the capital structure weights required for the WACC. What is the WACC? How to compute the after-tax cost of debt? How will taxes affect WACC? 5. What happens if we use the WACC for the discount rate for all projects? What are the two methods that can be used to compute the appropriate discount rate when WACC isn’t appropriate?
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.