Presentation is loading. Please wait.

Presentation is loading. Please wait.

Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,

Similar presentations


Presentation on theme: "Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,"— Presentation transcript:

1 Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge, UK), T.Heinemann (DAMTP, Cambridge, UK) Background: ESO press release 36/06

2 The magnetorotational instability (Balbus & Hawley, 1991) nonlinear evolution  numerical simulations

3 I. Setup & numerical issues

4 The shearing box (1/2) H H HH x y z r y x Local approximations Ideal MHD equations + EQS (isothermal) v y =-1.5  x Shearing box boundary conditions (Hawley et al. 1995)

5 The shearing box (2/2) Magnetic field configuration Transport diagnostics Maxwell stress: T Max = /P 0 Reynolds stress: T Rey = / P 0  =T Max +T Rey  rate of angular momentum transport Zero net flux: B z =B 0 sin(2  x/H) Net flux: B z =B 0 x z

6 The 90’s and early 2000’s Local simulations (Hawley & Balbus 1992) Breakdown into MHD turbulence (Hawley & Balbus 1992) Dynamo process (Gammie et al. 1995) Transport angular momentum outward: ~10 -3 -10 -1 Subthermal B field, subsonic velocity fluctuations BUT: low resolutions used (32 3 or 64 3 )

7 The issue of convergence (Nx,Ny,Nz)=(128,200,128) Total stress:  =2.0  10 -3 (Nx,Ny,Nz)=(256,400,256) Total stress:  =1.0  10 -3 (Nx,Ny,Nz)=(64,100,64) Total stress:  =4.2  10 -3 Fromang & Papaloizou (2007) ZEUS code (Stone & Norman 1992), zero net flux The decrease of  with resolution is not a property of the MRI. It is a numerical artifact!

8 Dissipation Reynolds number: Re =c s H/ Magnetic Reynolds number: Re M =c s H/  Small scales dissipation important  Explicit dissipation terms needed (viscosity & resistivity) Magnetic Prandtl number Pm= / 

9 Case I Zero net flux

10 Pm= /  =4, Re=3125 ZEUS :  =9.6  10 -3 (resolution 128 cells/scaleheight) NIRVANA :  =9.5  10 -3 (resolution 128 cells/scaleheight) SPECTRAL CODE:  =1.0  10 -2 (resolution 64 cells/scaleheight) PENCIL CODE :  =1.0  10 -2 (resolution 128 cells/scaleheight)  Good agreement between different numerical methods NIRVANA SPECTRAL CODE PENCIL CODE ZEUS Fromang et al. (2007)

11 Pm= /  =4, Re=6250 (Nx,Ny,Nz)=(256,400,256) DensityVertical velocityBy component Movie: B field lines and density field (software SDvision, D.Polmarede, CEA)

12 Effect of the Prandtl number Take Rem=12500 and vary the Prandtl number…. (Lx,Ly,Lz)=(H,  H,H) (Nx,Ny,Nz)=(128,200,128)   increases with the Prandtl number  No MHD turbulence for Pm<2 Pm= /  =4 Pm= /  = 8 Pm= /  = 16 Pm= /  = 2 Pm= /  = 1

13 The Pm effect Pm= /  >>1 Viscous length >> Resistive length Schekochihin et al. (2004) Schekochihin et al. (2007) VelocityMagnetic field Pm = /  <<1 Viscous length << Resistive length No proposed mechanisms…but: Dynamo in nature (Sun, Earth) Dynamo in experiments (VKS) Dynamo in simulations Schekochihin et al. (2007) VelocityMagnetic field

14 Parameter survey ? MHD turbulence No turbulence Re Pm Small scales important in MRI turbulence Transport increases with the Prandtl number No transport when Pm≤1 For a given Pm, does α saturates at high Re? ?

15 Pm=4, Transport (Nx,Ny,Nz)=(128,200,128) Re=3125 Total stress  =9.2 ± 2.8  10 -3 Total stress  =7.6 ± 1.7  10 -3 (Nx,Ny,Nz)=(256,400,256) Re=6250 Total stress  =2.0 ± 0.6  10 -2 (Nx,Ny,Nz)=(512,800,512) Re=12500 No systematic trend as Re increases…

16 Case II Vertical net flux

17 Influence of Pm Lesur & Longaretti (2007) - Pseudo-spectral code, resolution: (64,128,64) - (Lx,Ly,Lz)=(H,4H,H) -  =100

18 Conclusions & open questions Include explicit dissipation in local simulations of the MRI: resistivity AND viscosity Zero net flux AND nonzero net flux  an increasing function of Pm Behavior at large Re is unclear ? MHD turbulence No turbulence Re Pm Global simulations? What is the effect of large scales? State of PP disks very uncertain (Pm<<1) Dead zone location/structure very uncertain…

19 Pm=4, flow structure Re=3125Re=6250Re=12500 By in the (x,z) plane Power spectra Kinetic energy Magnetic energy

20 Protoplanetary disks properties Size: R d ~100-500 AU Mass: M d ~10 -2 M sol Lifetime:  d ~10 6-7 yr Accretion rate: M acc ~10 -7-8 M sol.yr -1  need for a source of turbulence


Download ppt "Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,"

Similar presentations


Ads by Google