Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy.

Similar presentations


Presentation on theme: "Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy."— Presentation transcript:

1 Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy Physics), Kyungpook Nat‘l University Kyungpook Nat‘l University

2 Prehistory of SU(3) Baryons Prehistory of SU(3) Baryons Motivation (Θ +, N *) Motivation (Θ +, N *) Chiral Soliton Model Chiral Soliton Model Masses and Decay Width Masses and Decay Width Summary Summary

3 Naïve Quark Model Naïve Quark Model (up, down, strange light quarks): SU(3) scheme to classify particles with the same spin and parity Fundamental Particles ? SU(2) SU(3) multiplets (proton, neutron) : isospin [ SU(2) ] → higher symmetry (Σ, K,···) : SU(3) Hadron [ baryon (qqq), meson (qq) ] : SU(3) color singlet Why not 4, 5, 6, … quark states ? representation 10* (10) Nothing prevents such states to exist Y. s. Oh and H. c. Kim, Phys. Rev. D 70, 094022 (2004)

4 Θ + 1997, Diakonov, Petrov, and Polyakov : Narrow 5-quark resonance (q 4 q : Θ + ) ( M = 1530, Γ ~ 15 MeV from Chiral Soliton Model ) ( uddss ) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+3/2 Ξ0Ξ0Ξ0Ξ03/2 Ξ-Ξ-Ξ-Ξ-3/2 Ξ --3/2 Σ-Σ-Σ-Σ-10 Σ0Σ0Σ0Σ010 Σ+Σ+Σ+Σ+10 ( uudss ) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) S = -1 S = -2

5 Successful searches for Θ + (2003~2005) : 2007 PDG Successful searches for Θ + (2003~2005) : 2007 PDG

6 Unsuccessful searches for Θ + (2006~2008) : 2010 PDG Unsuccessful searches for Θ + (2006~2008) : 2010 PDG ??? ?

7 Experimental Status Experimental Status New positive experiments ( 2005 - 2010) Θ + ■ DIANA 2010 ( Θ + ) : M = 1538±2, Γ= 0.39±0.10 MeV (K + n → K 0 p, higher statistical significance : 6σ - 8σ) LEPS, SVD, KEK [Signals are confirmed by LEPS, SVD, KEK, …] ■ GRAAL (N* ) : M = 1685±0.012 MeV, CBELSA/TAPS, LNS-Sendai ( CBELSA/TAPS, LNS-Sendai, …) (uddss) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 (uudss) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) Various experimental data for Θ + and Various experimental data for Θ + and N* Mass of Θ + : 1525 – 1565 MeV ■ Mass of Θ + : 1525 – 1565 MeV Mass of : 1665 – 1695 MeV ■ Mass of N* : 1665 – 1695 MeV

8 : Effective and relativistic low energy theory : Large N c limit : meson field → soliton : Quantizing SU(3) rotated-meson fields → Collective Hamiltonian, model baryon states Chiral Soliton Model Hedgehog Ansatz : Collective quantization SU(2) Witten imbedding into SU(3): SU(2) X U(1)

9 Model baryon state Constraint for the collective quantization : Mixings of baryon states

10 Mixing coefficients

11 Octet (8) Octet (8) : J p = 1/2 + Decuplet Decuplet (10) : J p = 3/2 + Y T3T3 Y Y T3T3 1 N NN N Ξ ΞΞ Ξ Λ Σ0Σ0Σ0Σ0 1 -2 Δ ΔΔ Δ Σ*Σ*Σ*Σ* Ξ*Ξ*Ξ*Ξ* Ω-Ω-Ω-Ω- -½ ½ 940 1116 1193 1318 Mass -½½ -3/2 1232 1385 1533 1673 Mass SU(3) flavor symmetry breaking Collective Hamiltonian for flavor symmetry breakings

12 Two advantages offered by the model-independent approach in the χSM by the model-independent approach in the χSM. model-parameters 1. the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons, namely octet, decuplet, antidecuplet, and so on. model-parameters 2. these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions. Mass : α, β, γ (for ) Mass : α, β, γ (for octet, decuplet, antidecuplet,…) Vector transitions : w i (i=1,2,…,6) Axial transitions : a i (i=1,2,…,6) [10], [10] Baryons l = l 0 (1 + c ΔT) : linear expansion coefficient of a wire, c [8] model-parameters

13 D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] 0.40.490.48 m s α [MeV] m s β [MeV] m s γ [MeV] -218 -156 -107 -605 -23 152 -197 -94 -53 c 10 0.0840.0880.037 Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, 305-314 (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, 054005 & Nucl. Phys. A 811 353 2008 Problems in the previous solitonic approaches Problems in the previous solitonic approaches

14 Octet (8) Octet (8) : J p = 1/2 + Decuplet Decuplet (10) : J p = 3/2 + Y T3T3 Y Y T3T3 1 N NN N Ξ ΞΞ Ξ Λ Σ0Σ0Σ0Σ0 1 -2 Δ ΔΔ Δ Σ*Σ*Σ*Σ* Ξ*Ξ*Ξ*Ξ* Ω-Ω-Ω-Ω- n ( udd ) n p p ( uud ) Ξ - ( dss)Ξ - Ξ 0 Ξ 0 ( uss ) Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ ½ 940 1116 1193 1318 Mass Δ - ( ddd )Δ - Δ ++ Δ ++ ( uuu ) Δ0Δ0Δ0Δ0 Δ+Δ+Δ+Δ+ Ω - Ω - ( sss ) Ξ*-Ξ*-Ξ*-Ξ*- Ξ*0Ξ*0Ξ*0Ξ*0 Σ*-Σ*-Σ*-Σ*- Σ*0Σ*0Σ*0Σ*0 Σ*+Σ*+Σ*+Σ*+ -½½ -3/2 1232 1385 1533 1673 Mass SU(3) flavor symmetry breaking + Isospin symmetry breaking Collective Hamiltonian for flavor symmetry breakings +

15 D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] 0.40.490.48 m s α [MeV] m s β [MeV] m s γ [MeV] -218 -156 -107 -605 -23 152 -197 -94 -53 c 10 0.0840.0880.037 Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, 305-314 (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, 054005 & Nucl. Phys. A 811 353 2008 Problems in the previous solitonic approaches Problems in the previous solitonic approaches In order to determine the values of model parameters, “Model-independent approach” needs more information (at least, 2 inputs for antidecuplet baryons).

16 Mass splittings within a Chiral Soliton Model Mass splittings within a Chiral Soliton Model Formulae for Baryon Octet Masses hadronic mass part in terms of δ 1 and δ 2

17 Formulae for Baryon Decuplet Masses hadronic mass part in terms of δ 1 and δ 2

18 Formulae for Baryon Anti-Decuplet Masses hadronic mass part in terms of δ 3

19 D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] 0.40.490.48 m s α [MeV] m s β [MeV] m s γ [MeV] -218 -156 -107 -605 -23 152 -197 -94 -53 c 10 0.0840.0880.037 Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, 305-314 (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, 054005 & Nucl. Phys. A 811 353 2008 Problems in the previous solitonic approaches Problems in the previous solitonic approaches

20 ★ In order to take fully into account the masses of the baryon octet as input, it is inevitable to consider the breakdown of isospin symmetry. ★ Two sources for the isospin symmetry breaking 1. mass differences of up and down quarks (hadronic part) 2.Electromagnetic interactions (EM part)

21 Δ M B = M B 1 – M B 2 = ( Δ M B ) H + ( Δ M B ) EM B(p) k p p p - k EM mass corrections Electromagnetic (EM ) self-energy EM [MeV]Exp. (p – n) EM 0.76±0.30 ΣΣ (Σ + – Σ - ) EM -0.17±0.30 ΞΞ (Ξ 0 –Ξ - ) EM -0.86±0.30 ( p – n ) exp ~ – 1.293 MeV ( p – n ) EM ~0.76 MeV 938.3 939.6 1197 1189 1321 1315 n ( udd ) n p p ( uud ) T3T3 Ξ - ( dss)Ξ - Ξ 0 Ξ 0 ( uss ) Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ 1 ½ 1 Y Gasser, Leutwyler, Phys.Rep 87, 77 “Quark Masses”

22 In the ChSM, It can be further reduced to Because of Bose symmetry G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)

23 Weinberg-Treiman formula M EM (T 3 ) = αT 3 2 + βT 3 + γ Dashen ansatz ΔM EM ~ κT 3 2 ~ κ’Q 2

24 Coleman-Glashow Coleman-Glashow relation EM [MeV] Exp. Exp. [input] (M p – M n ) EM0.76±0.30 (M Σ+ – M Σ - ) EM-0.17±0.30 (M Ξ 0 –M Ξ - ) EM-0.86±0.30

25 EM [MeV] Exp. Exp. [input]reproduced (M p – M n ) EM0.76±0.300.74±0.22 (M Σ+ – M Σ - ) EM-0.17±0.30-0.15±0.23 (M Ξ 0 –M Ξ - ) EM-0.86±0.30-0.88±0.28 Coleman-Glashow Coleman-Glashow relation Χ 2 fit

26 [ D.W.Thomas et al.] [ PDG, 2010 ] [ GW, 2006 ] [ Gatchina, 1981 ] Physical mass differences of baryon decuplet ■ Physical mass differences of baryon decuplet

27 Mass splittings within a Chiral Soliton Model Mass splittings within a Chiral Soliton Model Formulae for Baryon Octet Masses (ΔM) EM (ΔM) H hadronic mass part in terms of δ 1 and δ 2 G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)

28 D.P.PE.K.PχQSM This Work Considered Effects H SU(3) H. EMHH EM + iso H. + SU(3) H. Input Masses [MeV] N * (1710 ?) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2 ?) Θ + Θ + : 1500-1580 MeV Σ πN [MeV] 4573Predicted → 41 Result s I 2 [ fm ] 0.40.490.48 m s α [MeV] m s β [MeV] m s γ [MeV] -218 -156 -107 -605 -23 152 -197 -94 -53 c 10 0.0840.0880.037 Γ Θ+ [MeV] 15 for sym 11.1 for sym0.71 for sym Polyakov, D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, 305-314 (1997) Praszalowicz E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) H.-Ch. Kim, K. Goeke χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, 054005 & Nucl. Phys. A 811 353 2008 Problems in the previous solitonic approaches Problems in the previous solitonic approaches (uddss) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 (uudss) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) Various experimental data for Θ + and Various experimental data for Θ + and N* Mass of Θ + : 1525 – 1565 MeV ■ Mass of Θ + : 1525 – 1565 MeV Mass of : 1665 – 1695 MeV ■ Mass of N* : 1665 – 1695 MeV

29 Axial-vector transitions with The full expression for the axial-vector transitions g 1 BB’ = g 1 BB’ (0) + g 1 BB’ (op) + g 1 BB’ (wf)

30 Axial-vector transitions 0.36±0.08

31

32 Baryon octet masses

33 Baryon decuplet masses

34 Various experimental data for Θ + and Various experimental data for Θ + and N* Mass of Θ + : 1525 – 1565 MeV ■ Mass of Θ + : 1525 – 1565 MeV Mass of : 1665 – 1695 MeV ■ Mass of N* : 1665 – 1695 MeV DIANALEPS

35 Ξ -- 3/2 = 1862 MeV NA49 : Mass of Ξ -- 3/2 = 1862 MeV

36 DIANALEPS GRAAL,SAID MAMI

37 DIANA LEPSDIANA?

38 Chiral Soliton Model Chiral Soliton Model : “model-independent approach” ● Mass splittings : SU(3) and isospin symmetry breakings with EM in the range of M Θ+ = 1500-1600MeV used as input ● Masses of octet and decuplet are not sensitive to the M Θ+ input. → very good agreement with experimental data pion-nucleon sigma term ● Small value of pion-nucleon sigma term is estimated. (Σ πN = 35 - 40MeV) ● M Θ+ = 1524 MeV [LEPS], M N* = 1685 MeV [GRAAL], Γ Θ+ = 0.38±0.11 MeV [DIANA] : reliable values within a chiral soliton model.

39 Спасибо Thank you ありがとうございます 감사합니다 Danke schön 謝謝 TERIMA KASIH


Download ppt "Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy."

Similar presentations


Ads by Google