Presentation is loading. Please wait.

Presentation is loading. Please wait.

M. Patenaude Advanced Chemistry 30S GPHS Science Dept

Similar presentations


Presentation on theme: "M. Patenaude Advanced Chemistry 30S GPHS Science Dept"— Presentation transcript:

1 M. Patenaude Advanced Chemistry 30S GPHS Science Dept
Solutions M. Patenaude Advanced Chemistry 30S GPHS Science Dept

2 Definitions A solution is a homogeneous mixture
A solute is dissolved in a solvent. solute is the substance being dissolved solvent is the liquid in which the solute is dissolved an aqueous solution has water as solvent A saturated solution is one where the concentration is at a maximum - no more solute is able to dissolve. A saturated solution represents an equilibrium: the rate of dissolving is equal to the rate of crystallization. The salt continues to dissolve, but crystallizes at the same rate so that there “appears” to be nothing happening.

3 Dissolution of Solid Solute
What are the driving forces which cause solutes to dissolve to form solutions? 1. Covalent solutes dissolve by H-bonding to water or by LDF 2. Ionic solutes dissolve by dissociation into their ions.

4 Solution and Concentration
4 ways of expressing concentration Molarity(M): moles solute / Liter solution Mass percent: (mass solute / mass of solution) * 100 Molality* (m) - moles solute / Kg solvent Mole Fraction(A) - moles solute / total moles solution * Note that molality is the only concentration unit in which denominator contains only solvent information rather than solution.

5 % Concentration % (w/w) = % (w/v) = % (v/v) =

6 % Concentration: % Mass Example
3.5 g of CoCl2 is dissolved in 100mL solution. Assuming the density of the solution is 1.0 g/mL, what is concentration of the solution in % mass? %m = 3.5 g CoCl2 100g H2O = 3.5% (m/m)

7 Concentration: Molarity Example
If g of KMnO4 is dissolved in enough water to give 250. mL of solution, what is the molarity of KMnO4? As is almost always the case, the first step is to convert the mass of material to moles. 0.435 g KMnO4 • 1 mol KMnO4 = mol KMnO4 158.0 g KMnO4 Now that the number of moles of substance is known, this can be combined with the volume of solution — which must be in liters — to give the molarity. Because 250. mL is equivalent to L . Molarity KMnO4 = mol KMnO4 = M 0.250 L solution

8 A bottle of 0.500 M standard sucrose stock solution is in the lab.
Dilution Suppose you have M sucrose stock solution. How do you prepare 250 mL of M sucrose solution ? Concentration M Sucrose 250 mL of M sucrose When a solution is diluted, solvent is added to lower its concentration. The amount of solute remains constant before and after the dilution: moles BEFORE = moles AFTER M1V1 = M2V2 A bottle of M standard sucrose stock solution is in the lab. Give precise instructions to your assistant on how to use the stock solution to prepare mL of a M sucrose solution. 1 Recognize the problem and state it clearly Making the observation i.e., there is a ball of fire in the sky

9 3 Stages of Solution Process
Separation of Solute must overcome IMF or ion-ion attractions in solute requires energy, ENDOTHERMIC ( + DH) Separation of Solvent must overcome IMF of solvent particles requires energy, ENDOTHERMIC (+ DH) Interaction of Solute & Solvent attractive bonds form between solute particles and solvent particles “Solvation” or “Hydration” (where water = solvent) releases energy, EXOTHERMIC (- DH)

10 Dissolution at the molecular level?
Consider the dissolution of NaOH in H2O

11 Factors Affecting Solubility
1. Nature of Solute / Solvent. - Like dissolves like (IMF) 2. Temperature - i) Solids/Liquids- Solubility increases with Temperature Increase K.E. increases motion and collision between solute / solvent. ii) gas - Solubility decreases with Temperature Increase K.E. result in gas escaping to atmosphere. 3. Pressure Factor - i) Solids/Liquids - Very little effect Solids and Liquids are already close together, extra pressure will not increase solubility. ii) gas - Solubility increases with Pressure. Increase pressure squeezes gas solute into solvent.

12 Solubilities of Solids vs Temperature
Solubilities of several ionic solid as a function of temperature. MOST salts have greater solubility in hot water. A few salts have negative heat of solution, (exothermic process) and they become less soluble with increasing temperature.

13 Temperature & the Solubility of Gases The solubility of gases DECREASES at higher temperatures

14 Henry’s Law The effect of partial pressure on solubility of gases
At pressure of few atmosphere or less, solubility of gas solute follows Henry Law which states that the amount of solute gas dissolved in solution is directly proportional to the amount of pressure above the solution. c = k P c = solubility of the gas (M) k = Henry’s Law Constant P = partial pressure of gas Henry’s Law Constants (25°C), k N •10-7 M/mmHg O •10-6 M/mmHg CO •10-5 M/mmHg

15 Henry’s Law & Soft Drinks
Soft drinks contain “carbonated water” – water with dissolved carbon dioxide gas. The drinks are bottled with a CO2 pressure greater than 1 atm. When the bottle is opened, the pressure of CO2 decreases and the solubility of CO2 also decreases, according to Henry’s Law. Therefore, bubbles of CO2 escape from solution.

16 Henry’s Law Application
The solubility of pure N2 (g) at 25oC and 1.00 atm pressure is 6.8 x 10-4 mol/L. What is the solubility of N2 under atmospheric conditions if the partial pressure of N2 is 0.78 atm? Step 1: Use the first set of data to find “k” for N2 at 25°C Step 2: Use this constant to find the solubility (concentration) when P is 0.78 atm:

17 Colligative Properties
Dissolving solute in pure liquid will change all physical properties of liquid, Density, Vapor Pressure, Boiling Point, Freezing Point, Osmotic Pressure Colligative Properties are properties of a liquid that change when a solute is added. The magnitude of the change depends on the number of solute particles in the solution, NOT on the identity of the solute particles.

18 Vapor Pressure Lowering for a Solution
The diagram below shows how a phase diagram is affected by dissolving a solute in a solvent. The black curve represents the pure liquid and the blue curve represents the solution. Notice the changes in the freezing & boiling points.

19 Vapor Pressure Lowering
The presence of a non-volatile solute means that fewer solvent particles are at the solution’s surface, so less solvent evaporates!

20 Application of Vapor Pressure Lowering
Describe what is happening in the pictures below. Use the concept of vapor pressure lowering to explain this phenomenon.

21 Raoult’s Law Describes vapor pressure lowering mathematically.
The lowering of the vapour pressure when a non-volatile solute is dissolved in a volatile solvent (A) can be described by Raoult’s Law: PA = cAP°A PA = vapour pressure of solvent A above the solution cA = mole fraction of the solvent A in the solution P°A = vapour pressure of pure solvent A only the solvent (A) contributes to the vapour pressure of the solution

22 What is the vapor pressure of water above a sucrose (MW=342
What is the vapor pressure of water above a sucrose (MW=342.3 g/mol) solution prepared by dissolving g of sucrose in g of water at 25 ºC? The vapor pressure of pure water at 25 ºC is mmHg. mol sucrose = (158.0 g)/(342.3 g/mol) = mol mol water = (641.6 g)/(18 g/mol) = 35.6 mol Psol’n = Xwater Pwater = (0.987)(23.76 mm Hg) = mm Hg

23 Mixtures of Volatile Liquids Both liquids evaporate & contribute to the vapor pressure

24 Raoult’s Law: Mixing Two Volatile Liquids
Since BOTH liquids are volatile and contribute to the vapour, the total vapor pressure can be represented using Dalton’s Law: PT = PA + PB The vapor pressure from each component follows Raoult’s Law: PT = cAP°A + cBP°B Also, cA + cB = (since there are 2 components)

25 Benzene and Toluene Consider a two solvent (volatile) system
The vapor pressure from each component follows Raoult's Law. Benzene - Toluene mixture: Recall that with only two components, cBz + cTol = 1 Benzene: when Bz = 1, PBz = P°Bz = 384 torr & when Bz = 0 , PBz = 0 Toluene: when Tol = 1, PTol = P°Tol = 133 torr & when Tol = 0, PBz = 0

26

27 Normal Boiling Process
Extension of vapor pressure concept: Normal Boiling Point: BP of 1atm When solute is added, BP > Normal BP Boiling point is elevated when solute inhibits solvent from escaping. Elevation of B. pt. Express by Boiling point Elevation equation

28 Boiling Point Elevation
Tb = (Tb -Tb°) = i ·m ·kb Where, Tb = BP. Elevation Tb = BP of solvent in solution Tb° = BP of pure solvent m = molality , kb = BP Constant Some Boiling Point Elevation and Freezing Point Depression Constants Normal bp (°C) Kb Normal fp (°C) Kf Solvent pure solvent (°C/m) pure solvent (°C/m) Water Benzene Camphor Chloroform (CH3Cl)

29 Freezing Point Depression
Normal Freezing Point: FP of 1atm When solute is added, FP < Normal FP FP is depressed when solute inhibits solvent from crystallizing. When solution freezes the solid form is almost always pure. Solute particles does not fit into the crystal lattice of the solvent because of the differences in size. The solute essentially remains in solution and blocks other solvent from fitting into the crystal lattice during the freezing process.

30 Freezing Point Depression
Tf = i ·m ·kf Where, Tf = FP depression i = van’t Hoff Factor m = molality , kf = FP Constant Generally freezing point depression is used to determine the molar mass of an unknown substance. Derive an equation to find molar mass from the equation above. Phase Diagram and the lowering of the freezing point.

31 Osmotic pressure P = i CRT where P = osmotic pressure
Osmosis is the spontaneous movement of water across a semi-permeable membrane from an area of low solute concentration to an area of high solute concentration Osmotic Pressure - The Pressure that must be applied to stop osmosis P = i CRT where P = osmotic pressure i = van’t Hoff factor C = molarity R = ideal gas constant T = Kelvin temperature

32 Osmosis and Blood Cells
(a) A cell placed in an isotonic solution. The net movement of water in and out of the cell is zero because the concentration of solutes inside and outside the cell is the same. (b) In a hypertonic solution, the concentration of solutes outside the cell is greater than that inside. There is a net flow of water out of the cell, causing the cell to dehydrate, shrink, and perhaps die. (c) In a hypotonic solution, the concentration of solutes outside of the cell is less than that inside. There is a net flow of water into the cell, causing the cell to swell and perhaps to burst.


Download ppt "M. Patenaude Advanced Chemistry 30S GPHS Science Dept"

Similar presentations


Ads by Google