Presentation is loading. Please wait.

Presentation is loading. Please wait.

DIFFUSION OF NEUTRONS OVERVIEW Basic Physical Assumptions

Similar presentations


Presentation on theme: "DIFFUSION OF NEUTRONS OVERVIEW Basic Physical Assumptions"— Presentation transcript:

1 DIFFUSION OF NEUTRONS OVERVIEW Basic Physical Assumptions
Generic Transport Equation Diffusion Equation Fermi’s Age Equation Solutions to Reactor Equation

2 Basic Physical Assumptions
Neutrons are dimensionless points Neutron – neutron interactions are neglected Neutrons travel in straight lines Collisions are instantaneous Background material properties are isotropic Properties of background material are known and time-independent HT2005: Reactor Physics T10: Diffusion of Neutrons

3 T10: Diffusion of Neutrons
Physical Model (a) (b) HT2005: Reactor Physics T10: Diffusion of Neutrons

4 T10: Diffusion of Neutrons
Collision Model θ rm b rc χm v HT2005: Reactor Physics T10: Diffusion of Neutrons

5 T10: Diffusion of Neutrons
Initial Definitions j r W ex x y z ey v q HT2005: Reactor Physics T10: Diffusion of Neutrons

6 T10: Diffusion of Neutrons
Neutron Density HT2005: Reactor Physics T10: Diffusion of Neutrons

7 Angular Flux and Current Density
J dS HT2005: Reactor Physics T10: Diffusion of Neutrons

8 Generic Transport Equation
Arbitrary volume V We ignore macroscopic forces Asteroid Eros HT2005: Reactor Physics T10: Diffusion of Neutrons

9 Generic Transport Equation
Gauss Theorem: HT2005: Reactor Physics T10: Diffusion of Neutrons

10 Substantial Derivative
z r y x HT2005: Reactor Physics T10: Diffusion of Neutrons

11 Transport (Boltzmann) Equation
HT2005: Reactor Physics T10: Diffusion of Neutrons

12 T10: Diffusion of Neutrons
Collision Term z r y x HT2005: Reactor Physics T10: Diffusion of Neutrons

13 Neutron Transport Equation
HT2005: Reactor Physics T10: Diffusion of Neutrons

14 T10: Diffusion of Neutrons
Boundary Condition Outgoing direction Outward normal Ω Incoming direction ns r Volume V x y z Ω Rs Surface S V HT2005: Reactor Physics T10: Diffusion of Neutrons

15 T10: Diffusion of Neutrons
Difficulties Mathematical structure is too involved Mixed type equation (integro-differential), no way to reduce it to a differential equation Boundary conditions are given only for a halve of the values Too many variables (7 in general) Angular variable HT2005: Reactor Physics T10: Diffusion of Neutrons

16 T10: Diffusion of Neutrons
Angular Measures 180 Solar disks HT2005: Reactor Physics T10: Diffusion of Neutrons

17 T10: Diffusion of Neutrons
Plane Angles R φ HT2005: Reactor Physics T10: Diffusion of Neutrons

18 T10: Diffusion of Neutrons
Solid Angles HT2005: Reactor Physics T10: Diffusion of Neutrons

19 One-Group Diffusion Model
Infinite homogeneous and isotropic medium Neutron scattering is isotropic in Lab-system Weak absorption Σa << Σs All neutrons have the same velosity v. (One-Speed Approximation) The neutron flux is slowly varying function of position HT2005: Reactor Physics T10: Diffusion of Neutrons

20 T10: Diffusion of Neutrons
Derivation Isotropic scattering z y x r = 0 is most important HT2005: Reactor Physics T10: Diffusion of Neutrons

21 T10: Diffusion of Neutrons
Derivation II Taylor’s series at the origin: HT2005: Reactor Physics T10: Diffusion of Neutrons

22 T10: Diffusion of Neutrons
Derivation III HT2005: Reactor Physics T10: Diffusion of Neutrons

23 T10: Diffusion of Neutrons
Fick’s Law CM-System → Lab-System: HT2005: Reactor Physics T10: Diffusion of Neutrons

24 T10: Diffusion of Neutrons
Transport Mean Free Path Information about the original direction is lost Y Transport correction = A number of anisotropic collisions is replaced by one isotropic Y Y ls lscosY lscosY2 ltr HT2005: Reactor Physics T10: Diffusion of Neutrons

25 T10: Diffusion of Neutrons
Diffusion Equation HT2005: Reactor Physics T10: Diffusion of Neutrons

26 T10: Diffusion of Neutrons
Leakage Rate z Jz dz dx (x,y,z) dy y x HT2005: Reactor Physics T10: Diffusion of Neutrons

27 T10: Diffusion of Neutrons
Diffusion Equation Time-dependent: Time-independent: Time-independent from a steady source HT2005: Reactor Physics T10: Diffusion of Neutrons

28 T10: Diffusion of Neutrons
Laplace’s Operator Cartesian geometry Cylindrical geometry Spherical geometry HT2005: Reactor Physics T10: Diffusion of Neutrons

29 T10: Diffusion of Neutrons
Symmetries Slab geometry Spherical geometry Cylindrical geometry z y x z n = 0 for slab n = 1 for cylindrical n = 2 for spherical HT2005: Reactor Physics T10: Diffusion of Neutrons

30 T10: Diffusion of Neutrons
General Properties Flux is finite and non-negative Flux preserves the symmetry No return from a free surface Flux and current are continues Diffusion equation describes the balance of neutrons HT2005: Reactor Physics T10: Diffusion of Neutrons

31 T10: Diffusion of Neutrons
Interface Conditions A B z for +z - direction: for -z - direction: HT2005: Reactor Physics T10: Diffusion of Neutrons

32 T10: Diffusion of Neutrons
Boundary Condition Transport equation Free surface Diffusion eq. Straight line extrapolation from x = 0 towards vacuum: HT2005: Reactor Physics T10: Diffusion of Neutrons

33 Plane Infinite Source in Infinite Medium
Transport equation Q0 x = 0 HT2005: Reactor Physics T10: Diffusion of Neutrons

34 T10: Diffusion of Neutrons
Point Source in Infinite Medium r HT2005: Reactor Physics T10: Diffusion of Neutrons

35 T10: Diffusion of Neutrons
Plane Infinite Source in Slab Medium Q0 Infinite: Slab: x = -a/2 x = 0 x = a/2 HT2005: Reactor Physics T10: Diffusion of Neutrons

36 T10: Diffusion of Neutrons
Plane Infinite Source with Reflector 2 1 Q0 1 2 Reflector Reflector a Bare slab HT2005: Reactor Physics T10: Diffusion of Neutrons

37 T10: Diffusion of Neutrons
Age of Neutrons Energy q(E) - number of neutrons, which per cubic-centimeter and second pass energy E. q(E) = [n×cm-3 s-1] X-sections depend on E: D(E),Σs(E),... E0 Q E q(E) Slowing down medium: Mean Total Slowing down distance Can be shown HT2005: Reactor Physics T10: Diffusion of Neutrons

38 T10: Diffusion of Neutrons
Fermi’s Age Equation q(E+dE) E+dE E q(E) HT2005: Reactor Physics T10: Diffusion of Neutrons

39 Fermi’s Age Equation II
τ ~ time HT2005: Reactor Physics T10: Diffusion of Neutrons

40 Solutions to the Age Equation
No absorption x = 0 r No absorption HT2005: Reactor Physics T10: Diffusion of Neutrons

41 Slowing Down Density for Different Fermi’s Ages
HT2005: Reactor Physics T10: Diffusion of Neutrons

42 T10: Diffusion of Neutrons
Migration Area (Length) Thermal neutron absorbed Fast neutron borne r rs rth Fast neutron thermalized HT2005: Reactor Physics T10: Diffusion of Neutrons

43 Diffusion and Slowing Down Parameters for Various Moderators
HT2005: Reactor Physics T10: Diffusion of Neutrons

44 Neutrons in Multiplying Medium
Assumption: HT2005: Reactor Physics T10: Diffusion of Neutrons

45 Principles of a Nuclear Reactor
Leakage N2 2 MeV N1 Fast fission Energy n n/fission Slowing down Resonance abs. ν ≈ 2.5 Non-fissile abs. Non-fuel abs. 1 eV Fission 200 MeV/fission Leakage HT2005: Reactor Physics T10: Diffusion of Neutrons

46 T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons

47 T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons

48 T10: Diffusion of Neutrons
Buckling as Curvature Large core Small core HT2005: Reactor Physics T10: Diffusion of Neutrons

49 Criticality Condition
HT2005: Reactor Physics T10: Diffusion of Neutrons

50 T10: Diffusion of Neutrons
Eigenvalues Transport operator Differential operator Matrix HT2005: Reactor Physics T10: Diffusion of Neutrons

51 T10: Diffusion of Neutrons
Eigenfunctions Only one is physically meaningful a HT2005: Reactor Physics T10: Diffusion of Neutrons

52 Solution of a Reactor Equation
HT2005: Reactor Physics T10: Diffusion of Neutrons

53 T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons

54 T10: Diffusion of Neutrons
Rectangular Cylinder Sphere HT2005: Reactor Physics T10: Diffusion of Neutrons

55 Critical Size of a Reactor
We assume bare homogenous reactor For thermal neutrons we get: Slowing down neutrons: Assumption: Reactor is sufficiently big to treat neutron spectrum independently of space variables At the beginning slowing down density is t=0 HT2005: Reactor Physics T10: Diffusion of Neutrons

56 T10: Diffusion of Neutrons
For t > 0 one has to take into account resonance capture through p – resonance passage factor. HT2005: Reactor Physics T10: Diffusion of Neutrons

57 Non-Leakage Probability
HT2005: Reactor Physics T10: Diffusion of Neutrons

58 T10: Diffusion of Neutrons
Volume of an cylindrical reactor with buckling derived from a critical equation – the smallest critical size: HT2005: Reactor Physics T10: Diffusion of Neutrons

59 T10: Diffusion of Neutrons
Minimum Volume L V = V(R) L = L(R) L R D = 1.08 L HT2005: Reactor Physics T10: Diffusion of Neutrons

60 Optimum Core Dimensions
Core shape Optimum dimensions Minimal volume Cube Cylinder Sphere HT2005: Reactor Physics T10: Diffusion of Neutrons

61 T10: Diffusion of Neutrons
Migration Area HT2005: Reactor Physics T10: Diffusion of Neutrons

62 T10: Diffusion of Neutrons
Improved Diffusion HT2005: Reactor Physics T10: Diffusion of Neutrons

63 T10: Diffusion of Neutrons
The END HT2005: Reactor Physics T10: Diffusion of Neutrons

64 CRITICALITY EQUATION - physical interpretation
HT2005: Reactor Physics T10: Diffusion of Neutrons

65 Thermal non - leakage factor:
Thermal leakage: Thermal non - leakage factor: HT2005: Reactor Physics T10: Diffusion of Neutrons

66 T10: Diffusion of Neutrons
Derivation Number of collisions in dV Neutrons scattered towards dA Neutrons through dA per 1 second HT2005: Reactor Physics T10: Diffusion of Neutrons

67 T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons

68 T10: Diffusion of Neutrons
Delayed Neutrons HT2005: Reactor Physics T10: Diffusion of Neutrons

69 T10: Diffusion of Neutrons
HT2005: Reactor Physics T10: Diffusion of Neutrons


Download ppt "DIFFUSION OF NEUTRONS OVERVIEW Basic Physical Assumptions"

Similar presentations


Ads by Google