Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley,

Similar presentations


Presentation on theme: "Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley,"— Presentation transcript:

1 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley, Physics Department, University of Warwick

2 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview

3 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley, Physics Department, University of Warwick

4 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Solid-State Hardware Overview Electron and Nuclear Spins – Atomic dopants Donors in silicon NV - colour centres in diamond Others (eg SiC) – Quantum Dots Gate-defined Self-assembled Coherent Superconducting Circuits – Quantum computing Single microwave photons – Quantum annealing Hybrids of these

5 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Electron and Nuclear Spins – Atomic dopants Donors in silicon NV - colour centres in diamond Others (eg SiC) – Quantum Dots Gate-defined Self-assembled Coherent Superconducting Circuits – Quantum computing Single microwave photons – Quantum annealing Hybrids of these Solid-State Hardware Overview

6 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Electron and Nuclear Spins

7 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Electron and Nuclear Spins - Magnetic resonance

8 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Pulsed Electron Spin Resonance at 110 – 336 GHz GW Morley, L-C Brunel & J van Tol, Rev Sci Instrum 79, 064703 (2008) J van Tol, L-C Brunel & R J Wylde, Rev Sci Instrum 76, 074101 (2005) [1] GW Morley et al., PRL 101 (2008) [2] S Takahashi et al., PRL 101 (2008) [3] DR McCamey et al., Worldwide patent WO/2009/155563 (2009) [4] DR McCamey et al., PRL 102 (2009) [5] S Takahashi et al., PRL 102 (2009) [6] DR McCamey et al., Science 330 (2010) [7] GW Morley et al., Nat Materials 9 (2010) [8] S Takahashi et al., Nature 476 (2011) [9] KY Choi et al., PRL 108, 067206 (2012) [10] CC Lo et al., PRL 110 (2013)

9 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview 400 GHz Electron Spin Resonance

10 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview In rotating frame Spin Echo

11 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview In rotating frame Spin Echo

12 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Donors in silicon Image by Manuel Vögtli Reviews: DD Awschalom et al., Science 339, 1174 (2013) F. A. Zwanenburg et al., Rev. Mod. Phys. 85, 961 (2013)

13 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Donors in silicon B Koiller, RB Capaz, X Hu and S Das Sarma, PRB 70, 115207 (2004) Image by Manuel Vögtli

14 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Spin coherence of donors in silicon Bulk ensemble samples: Nuclear T 2 = 3 hours K Saeedi et al., Science 342, 830 (2013) Electron T 2 > 1 second AM Tyryshkin et al., Nature Materials 11, 143 (2012)

15 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Readout of donor spins in silicon A Morello et al., Nature 467, 687 (2010) JJ Pla et al., Nature 489, 541 (2012) JJ Pla et al., Nature 496, 334 (2013) Nuclear T 2 = 60 ms Electron T 2 > 0.2 ms

16 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Atomic-scale fabrication in silicon JL O’Brien et al., PRB 64, 161401 (2001) SR Schofield et al., PRL 91, 136104 (2003) M Fuechsle et al., Nat Nano 7, 242 (2012) B Weber et al., Science 335, 64 (2012)

17 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Bismuth qubits in silicon T Sekiguchi et al., PRL 104, 137402 (2010) GW Morley et al., Nature Materials 9, 725 (2010) RE George et al., PRL 105, 067601 (2010) GW Morley et al., Nature Materials 12, 103 (2013) G Wolfowicz et al., Nature Nano 8, 561 (2013) Image by Manuel Vögtli

18 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Colour centres in Diamond Nitrogen-vacancy centre (NV - ) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

19 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Coherence of NV - in Diamond Single spin at room temperature: Nuclear T 2 > 1 second PC Maurer et al., Science 336, 1283 (2012) Electron T 2 > 2 ms G Balasubramanian et al., Nature Materials 8, 383 (2009) Nitrogen-vacancy centre (NV - ) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

20 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Magnetometry in Diamond 1 electron spin at 50 nm: MS Grinolds et al., Nat Phys 9, 215 (2013) NMR with (5 nm) 3 volume: T Staudacher et al., Science 339, 561 (2013) HJ Mamin et al., Science 339, 557 (2013) Nanodiamond magnetometry: expect 290 nT Hz -1/2 ME Trusheim et al., Nano Lett 14, 32 (2013) Bulk ensemble magnetometry: expect 150 fT Hz -1/2 from 100 μm diamond VM Acosta et al., PRB 80, 115202 (2009)

21 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Nano-thermometry in Diamond Ambient thermometry: 5 mK Hz -1/2 in bulk, 130 mK Hz -1/2 in nanodiamonds G Kucsko et al., Nature 500, 54 (2013) P Neumann et al., Nano Lett 13, 2738 (2013) Nitrogen-vacancy centre (NV - ) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

22 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Nano-electromechanical diamond Cantilever: S. Kolkowitz et al., Science 335, 1603 (2012) Phonons: K. C. Lee et al., Science 334, 1253 (2011) Nitrogen-vacancy centre (NV - ) J Wrachtrup & F Jelezko, J Phys-CM 18, S807 (2006)

23 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atomic Spins - Diamond gyroscope Projected sensitivity of 10 −5 rad s −1 Hz −1/2 : MP Ledbetter et al., PRA 86, 052116 (2012) Levitated crystals: Y Arita, M Mazilu & K Dholakia, Nat Commun 4, 2374 (2013) M. Scala et al., PRL 111, 180403 (2013)

24 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Atoms for storing light - Rare-earth-ion-doped crystals Entangled photon storage: C Clausen et al., Nature 469, 508 (2011) E Saglamyurek et al., Nature 469, 512 (2011)

25 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Spins in quantum dots - Gate-defined dots in GaAs Single qubit control and readout: FHL Koppens et al., Nature 442, 766 (2006) Electron spins, 200 µs coherence: H Bluhm et al., Nat Phys 7, 109 (2011)

26 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Spins in quantum dots - Gate-defined dots in SiGe Electron spin T 1 > 2s CB Simmons et al., PRL 106, 156804 (2011) Electron spin T 2 * = 360 ns BM Maune et al., Nature 481, 344 (2012)

27 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Spins in quantum dots - Self-assembled dots in GaAs Single photon source: Sven Hoefling talk IJ Luxmoore et al., Sci Rep 3, 1239 (2013). MJ Conterio et al., APL 103, 162108 (2013). Debabrata Bhattacharyya, A. C. Bryce, John H. Marsh and Clivia M. Sotomayor-Torres, Glasgow

28 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Electron and Nuclear Spins – Atomic dopants Donors in silicon NV - colour centres in diamond Others (eg SiC) – Quantum Dots Gate-defined Self-assembled Coherent Superconducting Circuits – Quantum computing Single microwave photons – Quantum annealing Hybrids of these Solid-State Hardware Overview

29 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Coherent Superconducting Circuits L C R

30 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview L C R Φ Flux, Φ Energy |ground> |excited> Coherent Superconducting Circuits MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) J Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013)

31 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Coherent Superconducting Circuits MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) L Steffen et al., Nature 500, 319 (2013) - Aluminium (T c = 1.2 K) at 20 mK, aluminium oxide insulator - “Circuit QED” allows single microwaves to be created, transported, amplified and detected - Design Review:J

32 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Coherent Superconducting Circuits MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) J Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) 1 qubit gate ~ 10 ns, 2 qubit gate ~ 100 ns - Performance Review:J

33 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Coherent Superconducting Circuits MH Devoret & JM Martinis, Q Inf Proc 3, 163 (2004) RJ Schoelkopf & SM Girvin, Nature 451, 664 (2008) J Clarke & FK Wilhelm, Nature 453, 1031 (2008) MH Devoret & RJ Schoelkopf, Science 339, 1169 (2013) - Nano-electromechanical Quantum drum: AD O'Connell et al., Nature 464, 697 (2010) Review:J

34 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Coherent Superconducting Circuits Entanglement: M Neeley et al., Nature 467, 570 (2010) L DiCarlo et al., Nature 467, 574 (2010) Quantum error correction: MD Reed et al., Nature 482, 382 (2012) Teleportation: L Steffen et al., Nature 500, 319 (2013) 5 qubits with >99% gate fidelity: R Barends et al., arXiv:1402.4848 - Applications for three qubits

35 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Image courtesy of D-Wave Systems Inc. Paul Warburton talk MW Johnson et al., Nature 473, 194 (2011) NG Dickson et al., Nat Commun 4, 1903 (2013) Coherent Superconducting Circuits - Quantum annealing is not QC

36 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum phase slips JE Mooij & YV Nazarov, Nat Phys 2, 169 (2006) CH Webster et al., Phys Rev B 87, 144510 (2013) Coherent Superconducting Circuits - Nanowire current standard?

37 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Superconducting technologies? MEG with an array of 300 SQUIDs operated as classical magnetometers Also single photon detectors: - F Marsili et al., Nat Photonics 7, 210 (2013) - CM Natarajan, MG Tanner & RH Hadfield, Superconductor Science & Technology 25, 063001 (2012) - J Kuur et al., JLTP 167, 561 (2012) - Brain scans again

38 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Electron and Nuclear Spins – Atomic dopants Donors in silicon NV - colour centres in diamond Others (eg SiC) – Quantum Dots Gate-defined Self-assembled Coherent Superconducting Circuits – Quantum computing Single microwave photons – Quantum annealing Hybrids of these Solid-State Hardware Overview

39 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Spin-superconductor hybrids - Spin ensemble memory DI Schuster et al., PRL 105, 140501 (2010) Y Kubo et al., PRL 105, 140502 (2010) H Wu et al., PRL 105, 140503 (2010)

40 Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Electron and Nuclear Spins – Atomic dopants Donors in silicon NV - colour centres in diamond Others (eg SiC) – Quantum Dots Gate-defined Self-assembled Coherent Superconducting Circuits – Quantum computing Single microwave photons – Quantum annealing Hybrids of these Solid-State Hardware


Download ppt "Gavin W Morley, BQIT 26 th Feb 2014 Solid State Hardware Overview Quantum Technologies: Review of State-of-the-Art in Hardware (Solid-State) Gavin W Morley,"

Similar presentations


Ads by Google