Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture notes Taken in part from: Adley, D. J. (1991) The Physiology of Excitable Cells, Cambridge,3ed. Calabrese, R. C., Gordon, J., Hawkins, R., & Qian,

Similar presentations


Presentation on theme: "Lecture notes Taken in part from: Adley, D. J. (1991) The Physiology of Excitable Cells, Cambridge,3ed. Calabrese, R. C., Gordon, J., Hawkins, R., & Qian,"— Presentation transcript:

1 Lecture notes Taken in part from: Adley, D. J. (1991) The Physiology of Excitable Cells, Cambridge,3ed. Calabrese, R. C., Gordon, J., Hawkins, R., & Qian, Ning. (1995) Essentials of neural Science and Behavior. Study guide and practice problems. Appleton & Lange Davson, H. (1970) A Textbook of General Physiology, 4 th Ed., Williams and Wilkins Hille, B. (1992) Ionic Channels of Excitable Membranes, 2ed., Sinauer. Levitan, I. B. & Kaczmarek, L. K. (1991) The Neuron: Cell and Molecular biology, Oxford. Mathews, G. G. (1998) Cellular Physiology of Nerve and Muscle, Blackwell Science

2 CELL MEMBRANE 1) KEEPS THE CELL INTACKT (IN PART) 2) PERMEABLE TO SMALL MOLECULES 3) IMPERMEABLE TO LARGE MOLECULES.

3 DIFFUSION PHYSICAL PROCESS THAT EQUILIBRATES FREELY MOVING SUBSTANCES

4 CELLULAR COMPARTMENTS INTRACELLULAR SPACE – The fluid space surrounded by the plasma membrane or cell wall. EXTRACELLULAR SPACE – The fluid space surrounding the outside of a plasma membrane of a cell or cell wall.

5 COMPOSITIONS OF PARTICLAS WITHIN AND OUTSIDE PLASMA MEBRANES

6 PLASMA MEMBRANE

7 FREEZE FRACTURE TECHNIQUE

8

9 FRACTURE IS NOT ALONG CRYSTAL PLANES

10

11 OSMOLARITY CONCENTRATION OF WATER IN SOLUTIONS CONTAINING DIFFERENT DISSOLVED SUBSTANCES.

12 Osmolarity (cont.) THE HIGHER THE OSMOLARITY OF A SOLUTION THE LOWER THE CONCENTRATION OF WATER IN THAT SOLUTION.

13 MOLARITY THE MOLECULAR WEIGHT, IN GRAMS, OF A SUBSTANCE DISOLVED IN 1 LITER OF SOLUTION. (1 M)

14 Molarity (cont.) 1 MOLE OF DISOLVED PARTICLES PER LITER IS SAID TO HAVE 1 OSMAL

15 MOLALITY MOLES OF SOLUTION PER KILOGRAM OF SOLVENT Takes into account that large dissolved molecules (protein of high molecular weight) displace a greater volume of water than small molecules

16 Example Glucose, sucrose do not greatly dissolve in water. Number of water molecules does not change.

17 Osmolarity Osmolarity takes into account how many dissolved particles result from each molecule of the dissolved substance. 0.1 M glucose solution is 0.1 Osm solution.

18 Glucose, sucrose and urea molecules do not dissociate when dissolved in water. 0.1M glucose is a 0.1 Osm solution

19 Osmolarity for dissociated substances 0.1 M NaCl = 0.1 M Na + 0.1M Cl = 0.2 Osm

20 300 Osm 300 mM glucose 150 mM NaCl 100 mM NaCl + 100 mM Sucrose 75 mM NaCl + 75 mM KCl

21 Mixing The mixing is caused by the random independent motion of individual molecules (temperature dependent).

22 Two separate actions Random movement of the solute (glucose) Random movement of the solvent (water).

23 Osmosis WHEN SOLUTIONS OF DIFFERENT OSMOLARITY ARE PLACED IN CONTACT WITH A BARRIER THROUGH WHICH WATER WILL MOVE ACROSS THE BARRIER, WATER WILL MOVE FROM THAT SIDE WITH THE GREATER NUMBER OF WATER MOLECULES PER UNIT VOLUME (Higher Osmolarity) TO THAT SIDE WITH THE LESSER WATER MOLECULES PER UNIT VOLUME (Lower Osmolarity).

24 Home experiment Mason or Kerr quart jar. Dark Molasses Large Carrot Glass Tube

25 Observable change Mechanism is the same mechanism as diffusion, but observable with water for its causes observable changes in the volume of liquid of chamber into which the water moves.

26 Work done by osmosis moves piston from left to right compartment

27 Osmotic Pressure Suppose that one could measure the force necessary to just keep the water from moving into compartment A. That force devided by the cross sectional area of the piston would be the osmotic pressure of the system.

28 Aquapores Pores have now been found that transfer only water and not ions.

29 OSMOTIC CHANGE IN VOL.

30

31 OSMOTIC BALALANCE VS CELL VOLUME [S]in = [S]out [S]in + [P]in = [S]out

32 NO NET CHANGE WHEN IN BALANCE IF A SUBSTANCE IS AT DIFFUSION EQUILIBRIUM ACROSS THE CELL MEMBARANE, THERE IS NO NET MOVEMENT OF THAT SUBSTANCE ACROSS THAT MEMBRANE.

33 Osm vs. cell volume (cont.) REQUIRES THAT: [S] in = [S] out and [S] in + [P] in = [S] out BE SIMULATENEOUSLY TRUE AT EQUILIBRIUM.

34 How do cells in nature solve the simultaneous condition?

35 Solution 1 MAKE THE CELL IMPERMEANT TO WATER Certain epithelial cells (skin) are impermanent to water

36 Solution 2 PUT THE CONTENTS OF THE CELL WITHIN AN INELASTIC WALL Plant cell’s solution

37 Solution 3 MAKE THE CELL MEMBRANE IMPERMEANT TO SELECTED EXTRACELLULAR SOLUTES

38 Impermeant sucrose & protein

39 ECF Osm. Lower than ICF

40 ECF has permeant solute, ECF & ICF initially equal

41 ECF contains a mixture of permeant and impermeant solutes

42 [UREA] in + [P] in = [UREA] out + [SUCROSE] out

43 IONS IN SOLUTION (WATER) Ions in solution behave much like particles in solution.

44 Na +, K +, Cl -, Ca 2+ When they move they carry their charge with them.

45 Some channels are non selective as to the type of cation.

46 The movement of ions down their gradient can do work.

47 Size of ion depends on it ability to hold a water “cloud”

48 Most channels only allow one species of ion to pass

49 Na + channel. Water cloud must be stripped away

50

51 Current through channels follows Ohm’s law

52

53 CATION & ANIONS Positively charged particles in solution tend to congregate near the negative pole of a battery. Negatively charged particles tend to congregate near the positive poles.

54 DIFFUSION POTENTIAL DIFFERENTIAL DISTRIBUTION OF IONS IN SOLUTION BETWEEN TWO DIFFERENT COMAPARTMENTS, WITH A COMUNICATING CHANNEL, GIVE RISE TO A VOLTAGE GRADIANT IN THE SOLUTION.

55 Concentration Cell Different concentration of electrolyte XY in solution. Membrane permeable to only X +

56 Diffusion Concentration in 1 is greater than 2 by twice as much

57 Diffusion If the barrier is moved, twice as many X + moves down its gradient from compartment 1 to compartment 2, carrying a positive charge.

58 Charge separation Movement of charges from 1 to 2 sets up a potential difference between the two compartments. This charge separation is in the direction of 2 to 1, opposite to the diffusion gradient.

59 As the potential difference grows it will become increasing harder to move X + from 1 to 2. More and more X + will move from 2 to 1

60 Equilibrium Potential An equilibrium position is reached at which the electrical (tending to move X + from 2 to 1) just balances the chemical or concentration gradient (tending to move X + from 1 to 2).

61 Voltage 1) The potential difference that builds up in the above system is expressed as voltage (in mVolts).

62 Voltage (cont.) Voltage should be thought of as a gradient. A gradient implies looking at two places or states with respect to one another.

63 Electrical conventions 1 If Compartment 1 is the reference chamber, Compartment 2 is said to be positive with respect to compartment 1. (A volt meter will point toward the positive pole).

64 Electrical conventions 2 If the compartment 2 is the reference chamber, compartment 2 is negative with respect to compartment 1. (The voltmeter will point to the left chamber).

65 Voltage (cont.) 2) This can be thought of as an electromotive force.

66 Voltage (cont.) 3) Think of this voltage as a driving force for the movement of charges in space.

67 Equilibrium Potential A potential can be calculated for each species of ions which represents the balance between the electromotive force (separation of charge) and diffusion (differential concentration gradient) for a given species of ion across a selectively permeable membrane.

68 Temperature effect There is a temperature coefficient that is implied in the Nernst equation. Increasing the temperature increases the random motion of the molecules in solution. This increase will increase the probability of a given ion to go through the channel.

69 Nernst Equation If one wants to know the dynamic value of the diffusion flow one would have to do work to stop the flow. Assume an increment of work is done to just stop the flow of K down its gradient but no greater work.

70 Sources of energy driving the Nernst equation Diffusion gradient. The generated electrical field (Separation of Charge)

71 The differential concentrations (Diffusion)

72 Diffusion gradient of K

73

74 Work opposing diffusion δW c = δn(R)(T) ln([x] out /[x] in ) Where δW = increment of work δn = increment of number of moles moved. R = gas constant (8.314 J deg -1 mole -1 ) T = absolute temperature X = molar concentrations of solute in compartment 1 an 2

75 Work of opposing electromotive force Work of electromotive force opposing diffusion δW e = δn (zFE) δW e = increment of work. δn = moles moved against an electrical gradient. Z = valence of the ion moved. F = Faraday’s constant (96,500). E = the potential difference between the two compartments.

76 At Equilibrium, no net movement of X δW e = δW c or δn (z) (FE) = δn (R)(T)ln([X] 1 /[X] 2 ) Solving for E

77 Nernst Equation E = (RT/zF)ln([X] 1 /[X] 2 ) or E = (25/z)ln([X] 1 /[X] 2 ) or enumerating the constants E = (58/z)log 10 ([X 1 /X] 2 ) at 18 o C E is in millivolts.

78 CRITICAL PROPERTIES OF THE NERNST EQUATION Applies to only one ion at a time. Each ion will have its own equilibrium potential.

79 Property 1 Applies only to those ions that can cross the membrane.

80 Property 2 At equilibrium ions move across the membrane, but there is no net change in the number of ions that move per unit time.

81 Nernst equation (cont) If you exceed the equilibrium potential in excitable cells, the direction of current flow will be reversed and ions will flow in the opposite direction up hill (more on this later).

82 Implications If the concentration in one of the two chambers is changed, the voltage E must change. If the voltage changes, the ratio of the two compartments change and the concentrations must change with respect to each other.

83 The Effect External Δ Potassium Ion Concentrations on Membrane Potentials

84 The Resting Membrane Potential There is a resting membrane potential for all cells. Requires: Selectively permeable membrane, diffusion gradient, separation of charge


Download ppt "Lecture notes Taken in part from: Adley, D. J. (1991) The Physiology of Excitable Cells, Cambridge,3ed. Calabrese, R. C., Gordon, J., Hawkins, R., & Qian,"

Similar presentations


Ads by Google