Presentation is loading. Please wait.

Presentation is loading. Please wait.

UNIT-1. Overview Peer-to-Peer Networks Server based Networks Broadcast Networks Point-to-Point Networks Circuit Switching. Packet Switching. Message Switching.

Similar presentations


Presentation on theme: "UNIT-1. Overview Peer-to-Peer Networks Server based Networks Broadcast Networks Point-to-Point Networks Circuit Switching. Packet Switching. Message Switching."— Presentation transcript:

1 UNIT-1

2 Overview Peer-to-Peer Networks Server based Networks Broadcast Networks Point-to-Point Networks Circuit Switching. Packet Switching. Message Switching. Datagram & Virtual Circuit Network Networking Devices

3 What is Peer-to-Peer? A model of communication where every node in the network acts alike. As opposed to the Client-Server model, where one node provides services and other nodes use the services.

4 Advantages of P2P Network No central point of failure – E.g., the Internet and the Web do not have a central point of failure. – Most internet and web services use the client-server model (e.g. HTTP), so a specific service does have a central point of failure. Scalability – Since every peer is alike, it is possible to add more peers to the system and scale to larger networks.

5 Disadvantages of P2P Computing Decentralized coordination – How to keep global state consistent? – Need for distributed coherency protocols. All nodes are not created equal. – Computing power, bandwidth have an impact on overall performance. Programmability – As a corollary of decentralized coordination.

6 P2P Computing Applications File sharing Process sharing Collaborative environments

7 P2P File Sharing Applications Improves data availability Replication to compensate for failures. E.g., Napster, Gnutella, Freenet, KaZaA (FastTrack).

8 P2P Process Sharing Applications For large-scale computations Data analysis, data mining, scientific computing E.g., distributed.net, World-Wide Computer

9 P2P Collaborative Applications For remote real-time human collaboration. Instant messaging, virtual meetings, shared whiteboards, teleconferencing, tele-presence. E.g., talk, AOL Messenger, Yahoo! Messenger, Jabber, MS Netmeeting, NCSA Habanero, Games

10 P2P Technical Challenges Peer identification Routing protocols Network topologies Peer discovery Communication/coordination protocols Quality of service Security Fine-grained resource management

11 P2P Topologies Centralized Ring Hierarchical Decentralized Hybrid

12 Centralized Manageable Coherent Extensible Fault Tolerant Secure Lawsuit-proof Scalable System is all in one place All information is in one place XNo one can add on to system XSingle point of failure Simply secure one host XEasy to shut down ?One machine. But in practice?

13 Ring Manageable Coherent Extensible Fault Tolerant Secure Lawsuit-proof Scalable Simple rules for relationships Easy logic for state XOnly ring owner can add Fail-over to next host As long as ring has one owner XShut down owner Just add more hosts

14 Hierarchical Manageable Coherent Extensible Fault Tolerant Secure Lawsuit-proof Scalable ½Chain of authority ½Cache consistency ½Add more leaves, rebalance ½Root is vulnerable XToo easy to spoof links XJust shut down the root Hugely scalable – DNS

15 Decentralized Manageable Coherent Extensible Fault Tolerant Secure Lawsuit-proof Scalable XVery difficult, many owners XDifficult, unreliable peers Anyone can join in! Redundancy XDifficult, open research No one to sue ?Theory – yes : Practice – no

16 Centralized + Ring Manageable Coherent Extensible Fault Tolerant Secure Lawsuit-proof Scalable Just manage the ring As coherent as ring XNo more than ring Ring is a huge win As secure as ring XStill single place to shut down Ring is a huge win Common architecture for web applications

17 Centralized + Decentralized Manageable Coherent Extensible Fault Tolerant Secure Lawsuit-proof Scalable XSame as decentralized ½Better than decentralized Anyone can still join! Plenty of redundancy XSame as decentralized Still no one to sue ?Looking very hopeful Best architecture for P2P networks?

18 Napster The P2P revolution is started. Central indexing and searching service File downloading in a peer-to-peer point-to- point manner.

19 Gnutella Peer-to-peer indexing and searching service. Peer-to-peer point-to-point file downloading using HTTP. A gnutella node needs a server (or a set of servers) to “start-up”… gnutellahosts.com provides a service with reliable initial connection points But introduces a new single point of failure!

20 Freenet Peer-to-peer indexing and searching service. Peer-to-peer file downloading. uses a decentralized distributed data store to keep and deliver information, and has a suite of free software for publishing and communicating on the Web without fear of censorship Files served use the same route as searches (not point-to-point) – Provides for anonymity.

21 Client host Server host Client host Server Based Networks

22 Specialization: – Clients specialize in user interface – Servers specialize in managing data and application logic Sharing: – Many clients can be supported by few servers – Often data and logic are shared among applications and users

23 Client/server Peer-to-peer Server “I want to access some information” “I want to collaborate with my colleague” Client

24 Distinctions Client-server – Asymmetric relationship – Client predominately makes requests, server makes replies Peer-to-peer – Symmetric relationship

25 Client Server Client Email client sends message to server Message is stored on POP server Later, recipient’s email client retrieves message from server Email application

26 Client Server Client Chat clients send user’s typing to server Chat server aggregates typing from all users and sends to all clients Other user’s clients display aggregated typing from chat server Chat application

27 Presentation Application logic Shared data Local-area network Note: many clients per application server, several application servers per data server Three-tier client/server

28 Client Web browser Web server Application logic Databases and DBMS Common gateway interchange Host architecture Application partition

29 amazon.com

30 Broadcast Networks Broadcast Network: Shared Communication Medium – Shared Medium can be a set of wires Inside a computer, this is called a bus All devices simultaneously connected to devices – Originally, Ethernet was a broadcast network All computers on local subnet connected to one another – More examples (wireless: medium is air): cellular phones, GSM GPRS, EDGE, CDMA 1xRTT, and 1evDO Memory Processor I/O Device I/O Device I/O Device

31 Broadcast Networks Details Header (Dest:2) Body (Data) Message ID:1 (ignore) ID:2 (receive) ID:4 (ignore) ID:3 (sender)

32 Broadcast Network Arbitration Delivery: When you broadcast a packet, how does a receiver know who it is for? (packet goes to everyone!) – Put header on front of packet: [ Destination | Packet ] – Everyone gets packet, discards if not the target – In Ethernet, this check is done in hardware No OS interrupt if not for particular destination – This is layering: we’re going to build complex network protocols by layering on top of the packet Arbitration: Act of negotiating use of shared medium – What if two senders try to broadcast at same time? – Concurrent activity but can’t use shared memory to coordinate!

33 Point-to-point networks Why have a shared bus at all? Why not simplify and only have point-to-point links + routers/switches? – Didn’t used to be cost-effective – Now, easy to make high-speed switches and routers that can forward packets from a sender to a receiver. Point-to-point network: a network in which every physical wire is connected to only two computers Switch: a bridge that transforms a shared-bus (broadcast) configuration into a point-to-point network. Router: a device that acts as a junction between two networks to transfer data packets among them. Router Internet Switch

34 Point-to-Point Networks Advantages: – Higher link performance Can drive point-to-point link faster than broadcast link since less capacitance/less echoes (from impedance mismatches) – Greater aggregate bandwidth than broadcast link Can have multiple senders at once – Can add capacity incrementally Add more links/switches to get more capacity – Better fault tolerance Disadvantages: – More expensive than having everyone share broadcast link Examples – ATM (asynchronous transfer mode) The first commercial point-to-point LAN Inspiration taken from telephone network – Switched Ethernet Same packet format and signaling as broadcast Ethernet, but only two machines on each ethernet.

35 Switching

36 Switched network A switched network consists of a series of interlinked nodes, called switches. Switches are devices capable of creating temporary connections between two or more devices linked to the switch. For example: computers or telephones

37 Taxonomy of switched networks

38 CIRCUIT-SWITCHED NETWORKS CIRCUIT-SWITCHED NETWORKS A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM.

39 A trivial circuit-switched network

40 In circuit switching, the resources need to be reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase. Circuit switching takes place in Physical layer. Data transfer between the two nodes is a continuous flow. No addressing is involved during data transfer.

41 As a trivial example, let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections. Example

42 Circuit-switched network used in Example

43 As another example, consider a circuit-switched network that connects computers in two remote offices of a private company. The offices are connected using a T-1 line leased from a communication service provider. There are two 4 × 8 (4 inputs and 8 outputs) switches in this network. For each switch, four output ports are folded into the input ports to allow communication between computers in the same office. Four other output ports allow communication between the two offices. Example

44 Circuit-switched network used in Example 2

45 Efficiency Less Because resources are allocated during the entire duration of the connection. In a telephone network, people normally terminate the communication when they have finished their conversation. However, in computer networks, a computer can be connected to another computer even if there is no activity for a long time

46 Delay: Transmission and Propagation Delay Propagation delay between Host 1 and Switch1 Transmission delay Host 1Switch 1 1.Size of transfer 2.Bandwidth of link 1.Speed of light 2.Physical distance Delay Minimal Because resources are allocated for the duration of the connection But delay due to transmission and propagations

47 Circuit-Switched Technology in Telephone Networks

48 DATAGRAM NETWORKS DATAGRAM NETWORKS In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol. In a packet-switched network, there is no resource reservation; resources are allocated on demand. Datagram switching is normally done at the network layer.

49 A datagram network with four switches (routers)

50 Routing table in a datagram network A switch in a datagram network uses a routing table that is based on the destination address. The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet. Switching in the Internet is done by using the datagram approach to packet switching at the network layer.

51 Efficiency The efficiency of a datagram network is better than that of a circuit-switched network; resources are allocated only when there are packets to be transferred..

52 Delay There may be greater delay in a datagram network than in a virtual-circuit network. The packet travels through two switches. There are three transmission times (3T),three propagation delays (slopes 3't of the lines), and two waiting times (WI + w2)' Weignore the processing time in each switch. Total delay =3T + 3t + WI + W2

53 Datagram Networks in the Internet

54 VIRTUAL-CIRCUIT NETWORKS VIRTUAL-CIRCUIT NETWORKS A virtual-circuit network is a cross between a circuit- switched network and a datagram network. It has some characteristics of both. A source or destination can be a computer, packet switch, bridge, or any other device that connects other networks

55 Virtual-circuit identifier The identifier that is actually used for data transfer is called the virtual-circuit identifier(VCI)

56 Switch and tables in a virtual-circuit network

57 Source-to-destination data transfer in a virtual-circuit network

58 Setup request in a virtual-circuit network

59 Setup acknowledgment in a virtual-circuit network

60 In virtual-circuit switching, all packets belonging to the same source and destination travel the same path; but the packets may arrive at the destination with different delays if resource allocation is on demand. Switching at the data link layer in a switched WAN is normally implemented by using virtual-circuit techniques.

61 Efficiency In virtual-circuit switching, all packets belonging to the same source and destination travel the same path; but the packets may arrive at the destination with different delays if resource allocation is on demand. Ex: Consider a family that wants to dine at a restaurant. Although the restaurant may not accept reservations (allocation of the tables is on demand), the family can call and find out the waiting time. This can save the family time and effort.

62 Delay a one-time delay for setup and a one-time delay for teardown. The packet is traveling through two switches (routers). There are three transmission times (3T), three propagation times (3't), data transfer depicted by the sloping lines, a setup delay (which includes transmission and propagation in two directions), and a teardown delay (which includes transmission and propagation in one direction). Total delay = 3T+ 3't + setup delay + teardown delay

63 Circuit-Switched Technology in WANs

64 Message Switching A store-and-forward network where the block of transfer is a complete message. Since messages can be quite large, this can cause: – buffering problems – high mean delay times

65 Network Devices – Repeater – Hub – Bridge – Router – Gateway

66 Connecting Devices Networking Devices RepeatersBridges Internetworking Devices RoutersGateways

67 Connecting Devices Hub

68 Repeater Extend the physical length No network function has been changed Location is matter

69 Function of repeater Repeater is not same as Amplifier

70 Hub Actually is a multiport repeater Star / Tree Topology

71 Bridge

72 Divide a large network into smaller segment Isolating and controlling the link problems (e.g. congestion) Regenerate signal + Checking Physical Address and forward only to the specified segment

73 Function of a bridge

74 Multiport bridge 74/ 25

75 Routers

76 Routers in an internet 76/ 25

77 Routers Act like stations on a network Multi-home Definition (Goal) – “ Learning how to get from here to there." – “ Process of discovering, selecting, and employing paths from one place to another (or to many others) in a network ”

78 Routing Principle Goal: Arriving at the destination Considerations: – Direct route (shortest) – Reliable route – Cheap route – Safe route – Scenic route

79 Gateways (protocol converter)

80 A gateway SNA network (IBM) Netware network (Novell)

81 Other devices Multiprotocol routers Brouters Switches Routing switches

82 Single VS. Multiprotocol router

83 Brouter

84 Backbone Network 84/ 25 Bus Backbone Star Backbone

85 Connecting Remote LAN A point-to-point link acts as a LAN in a remote backbone connected by remote bridges

86 Virtual LAN (VLAN) VLANs create broadcast domains

87 VLAN with backbone switch


Download ppt "UNIT-1. Overview Peer-to-Peer Networks Server based Networks Broadcast Networks Point-to-Point Networks Circuit Switching. Packet Switching. Message Switching."

Similar presentations


Ads by Google