Download presentation
Presentation is loading. Please wait.
Published byVerity Butler Modified over 9 years ago
1
Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT Association, Norway Mary McCready SRI International, USA Christine Amory-Mazaudier Centre for the Study of Earth and Planets Environments, CNRS, France Shoichiro Fukao Research Institute for Sustainable Humanosphere, Kyoto University, Japan Michael Sulzer Arecibo Observatory, National Astronomy & Ionosphere Center, Puerto Rico
2
Outline ISR long-term database Modeling technique Results: local models A case study: Annual variations Comparisons with IRI Applications Regional Models ISR Convection Model Model Availability Future Projects
3
World Incoherent Scatter Radars
4
MADRIGAL: Long-term ISR Database www.openmadrigal.org
5
Madrigal
6
The European Chain: EISCAT Svalbard Radar (1997-), in polar cap, the highest latitude EISCAT Tromsø UHF radar (1984-) and VHF radar (1990-), St. Santin Radar (1973-1986) East America Chain Sondrestrom Radar (1990-) Millstone Hill Radar (1970-) Arecibo Radar (1966-) East Asia MU Radar (1986-2003) Existing Long-term Data
7
Binning and Fitting technique Data are binned according to local time and month Piece-wise linear height profile is used for initial data binning with 17-19 height nodes. Solar activity dependency is determined by a leaset-squares fit to a linear function to F107. Median filter (3 months x 3 hours) is applied to the fitting coefficients.
8
Analytic representations of bin-fit results Seasonal variations: harmonics with 12, 6 and 3 month components Local time variations: harmonics with 24, 12, 6 and 3 hour components Height variations: cubic B-spline with 17 breaks and gradient controls at upper and lower boundaries.
9
Height Profile
10
Height Profile Basis Function
11
Data Distribution
12
Results: Midday Ne Svalbard Millstone Arecibo Shigariki Curve Color Code Winter Spring Summer Autumn St. Santin Tromso Sondrestrom
13
Results : Latitudinal and Longitudinal features subauroral midlatitude highlatitude Semiannual components, longitudinal differences Strong semiannual components, asymmetry Semiannual components starts to occur Lower midlatitude
14
O/N2 and SZA change O/N2 (from MSIS)O/N2 x cos (SZA) SZA = solar zenith angle
15
Ti At Millstone, highest Ti occurs in May.
16
Yearly variations: Millstone
17
Yearly variations in midday Ti at 350 km: Millstone Circles: Data Dashed: Model Percentage difference Data - Model difference F107
18
Comparisons with IRI: diurnal AreMUStSMHTroSonSva Ne Ti Te Ne Ti Te Median solar activity conditions with F107=135 or Rz=88
19
Comparisons with IRI: profile AreMUStSMHTroSonSva Ne Ti Te Ne Ti Te Median solar activity conditions with F107=135 or Rz=88
20
Model Applications: Tn and [O] Using a simplified energy equations for ions (widely used in the ISR community for the neutral parameter deduction)
21
ISR Convection Model
22
Regional Ionospheric Models: Millstone Areas Millstone Regional Ionospheric Model covers geodetic latitudes 35- 55 degrees.
23
ISR Convection Model: data A Combined Dataset from Millstone and Sondrestrom ISRs Observations
24
ISR Convection Model: IMF Bz controls
25
ISR Model Availability Virtual Incoherent Scatter Radars Web interface FTP http://madrigal.haystack.mit.edu/models OR http://www.openmadrigal.org
26
Virtual ISRs Virtual ISRs – current day
27
Virtual ISRs – current time
28
Future Projects Regional ionospheric models for Eastern America longitudes European longitudes
29
A New Space Weather Project Multiple incoherent scatter radar long-term database study of upper atmosphere climatology and variability 1. to generate databases of thermospheric Tn, [O], winds for multiple ISRs; 2. to develop local and regional models of the thermospheric parameters; 3. to create variability models of the ionospheric as well as thermospheric parameters; 4. to study latitudinal/longitudinal features of the ionosphere and thermosphere.
30
Arecibo: Ne diurnal
31
Arecibo: Te diurnal
32
Arecibo: Ti diurnal
33
MU: Ne diurnal
34
Millstone: Ne diurnal
35
Millstone: Ti diurnal
36
Millstone: Te diurnal
37
St. Santin: Ne diurnal
38
St. Santin: Ti diurnal
39
St. Santin: Te diurnal
40
Tromso: Ne diurnal
41
Tromso: Ti diurnal
42
Tromso: Te diurnal
43
Sondrestrom: Ne diurnal
44
Sondrestrom: Ti diurnal
45
Sondrestrom: Te diurnal
46
Svalbard: Ne Diurnal
47
Svalbard: Ti Diurnal
48
Svalbard: Te Diurnal
49
Arecibo: Ne profile
50
Arecibo: Ti profile
51
Arecibo: Te profile
52
MU: Ne profile
53
Millstone: Ne profile
54
Millstone: Ti profile
55
Millstone: Te profile
56
St Santin: Ne profile
57
St Santin: Ti profile
58
St Santin: Te profile
59
Tromso: Ne profile
60
Tromso: Ti profile
61
Tromso: Te profile
62
Sondrestrom: Ne profile
63
Sondrestrom: Ti profile
64
Sondrestrom: Te profile
65
Svalbard: Ne profile
66
Svalbard: Ti profile
67
Svalbard: Te profile
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.