Presentation is loading. Please wait.

Presentation is loading. Please wait.

© 2006 Prentice Hall, Inc.4 – 1  Short-range forecast  Up to 1 year, generally less than 3 months  Purchasing, job scheduling, workforce levels, job.

Similar presentations


Presentation on theme: "© 2006 Prentice Hall, Inc.4 – 1  Short-range forecast  Up to 1 year, generally less than 3 months  Purchasing, job scheduling, workforce levels, job."— Presentation transcript:

1 © 2006 Prentice Hall, Inc.4 – 1  Short-range forecast  Up to 1 year, generally less than 3 months  Purchasing, job scheduling, workforce levels, job assignments, production levels  Medium-range forecast  3 months to 3 years  Sales and production planning, budgeting  Long-range forecast  3 + years  New product planning, facility location, research and development Forecasting Time Horizons

2 © 2006 Prentice Hall, Inc.4 – 2 Trend Seasonal Cyclical Random Time Series Components

3 © 2006 Prentice Hall, Inc.4 – 3 Components of Demand Demand for product or service |||| 1234 Year Average demand over four years Seasonal peaks Trend component Actual demand Random variation Figure 4.1

4 © 2006 Prentice Hall, Inc.4 – 4 Graph of Moving Average ||||||||||||JFMAMJJASONDJFMAMJJASOND||||||||||||JFMAMJJASONDJFMAMJJASOND Shed Sales 30 30 – 28 28 – 26 26 – 24 24 – 22 22 – 20 20 – 18 18 – 16 16 – 14 14 – 12 12 – 10 10 – Actual Sales Moving Average Forecast

5 © 2006 Prentice Hall, Inc.4 – 5 Impact of Different  225 225 – 200 200 – 175 175 – 150 150 – |||||||||123456789123456789|||||||||123456789123456789 Quarter Demand  =.1 Actual demand  =.5

6 © 2006 Prentice Hall, Inc.4 – 6 Least Squares Method Time period Values of Dependent Variable Figure 4.4 Deviation 1 Deviation 5 Deviation 7 Deviation 2 Deviation 6 Deviation 4 Deviation 3 Actual observation (y value) Trend line, y = a + bx ^

7 © 2006 Prentice Hall, Inc.4 – 7 Least Squares Method Time period Values of Dependent Variable Figure 4.4 Deviation 1 Deviation 5 Deviation 7 Deviation 2 Deviation 6 Deviation 4 Deviation 3 Actual observation (y value) Trend line, y = a + bx ^ Least squares method minimizes the sum of the squared errors (deviations)

8 © 2006 Prentice Hall, Inc.4 – 8 Least Squares Example b = = = 10.54 ∑xy - nxy ∑x 2 - nx 2 3,063 - (7)(4)(98.86) 140 - (7)(4 2 ) a = y - bx = 98.86 - 10.54(4) = 56.70 TimeElectrical Power YearPeriod (x)Demandx 2 xy 1999174174 20002794158 20013809240 200249016360 2003510525525 2004614236852 2005712249854 ∑x = 28∑y = 692∑x 2 = 140∑xy = 3,063 x = 4y = 98.86

9 © 2006 Prentice Hall, Inc.4 – 9 Least Squares Example b = = = 10.54  xy - nxy  x 2 - nx 2 3,063 - (7)(4)(98.86) 140 - (7)(4 2 ) a = y - bx = 98.86 - 10.54(4) = 56.70 TimeElectrical Power YearPeriod (x)Demandx 2 xy 1999174174 20002794158 20013809240 200249016360 2003510525525 2004614236852 2005712249854  x = 28  y = 692  x 2 = 140  xy = 3,063 x = 4y = 98.86 The trend line is y = 56.70 + 10.54x ^

10 © 2006 Prentice Hall, Inc.4 – 10 Least Squares Example ||||||||| 199920002001200220032004200520062007 160 160 – 150 150 – 140 140 – 130 130 – 120 120 – 110 110 – 100 100 – 90 90 – 80 80 – 70 70 – 60 60 – 50 50 – Year Power demand Trend line, y = 56.70 + 10.54x ^

11 © 2006 Prentice Hall, Inc.4 – 11 Associative Forecasting Forecasting an outcome based on predictor variables using the least squares technique y = a + bx ^ where y= computed value of the variable to be predicted (dependent variable) a= y-axis intercept b= slope of the regression line x= the independent variable though to predict the value of the dependent variable ^

12 © 2006 Prentice Hall, Inc.4 – 12 Associative Forecasting Example SalesLocal Payroll ($000,000), y($000,000,000), x 2.01 3.03 2.54 2.02 2.01 3.57 4.0 – 3.0 – 2.0 – 1.0 – |||||||01234567|||||||01234567 Sales Area payroll

13 © 2006 Prentice Hall, Inc.4 – 13 Associative Forecasting Example Sales, y Payroll, xx 2 xy 2.0112.0 3.0399.0 2.541610.0 2.0244.0 2.0112.0 3.574924.5 ∑y = 15.0∑x = 18∑x 2 = 80∑xy = 51.5 x = ∑x/6 = 18/6 = 3 y = ∑y/6 = 15/6 = 2.5 b = = =.25 ∑xy - nxy ∑x 2 - nx 2 51.5 - (6)(3)(2.5) 80 - (6)(3 2 ) a = y - bx = 2.5 - (.25)(3) = 1.75

14 © 2006 Prentice Hall, Inc.4 – 14 Associative Forecasting Example 4.0 – 3.0 – 2.0 – 1.0 – |||||||01234567|||||||01234567 Sales Area payroll y = 1.75 +.25x ^ Sales = 1.75 +.25(payroll) If payroll next year is estimated to be $600 million, then: Sales = 1.75 +.25(6) Sales = $325,000 3.25

15 © 2006 Prentice Hall, Inc.4 – 15 Standard Error of the Estimate  A forecast is just a point estimate of a future value  This point is actually the mean of a probability distribution Figure 4.9 4.0 – 3.0 – 2.0 – 1.0 – |||||||01234567|||||||01234567 Sales Area payroll 3.25

16 © 2006 Prentice Hall, Inc.4 – 16 Standard Error of the Estimate wherey=y-value of each data point y c =computed value of the dependent variable, from the regression equation n=number of data points S y,x = ∑(y - y c ) 2 n - 2

17 © 2006 Prentice Hall, Inc.4 – 17 Standard Error of the Estimate Computationally, this equation is considerably easier to use We use the standard error to set up prediction intervals around the point estimate S y,x = ∑y 2 - a∑y - b∑xy n - 2

18 © 2006 Prentice Hall, Inc.4 – 18 Standard Error of the Estimate 4.0 – 3.0 – 2.0 – 1.0 – |||||||01234567|||||||01234567 Sales Area payroll 3.25 S y,x = = ∑y 2 - a∑y - b∑xy n - 2 39.5 - 1.75(15) -.25(51.5) 6 - 2 S y,x =.306 The standard error of the estimate is $30,600 in sales

19 © 2006 Prentice Hall, Inc.4 – 19  How strong is the linear relationship between the variables?  Correlation does not necessarily imply causality!  Coefficient of correlation, r, measures degree of association  Values range from -1 to +1 Correlation

20 © 2006 Prentice Hall, Inc.4 – 20 Correlation Coefficient r = n  xy -  x  y [n  x 2 - (  x) 2 ][n  y 2 - (  y) 2 ]

21 © 2006 Prentice Hall, Inc.4 – 21 Correlation Coefficient r = n∑xy - ∑x∑y [n∑x 2 - (∑x) 2 ][n∑y 2 - (∑y) 2 ] y x (a)Perfect positive correlation: r = +1 y x (b)Positive correlation: 0 < r < 1 y x (c)No correlation: r = 0 y x (d)Perfect negative correlation: r = -1

22 © 2006 Prentice Hall, Inc.4 – 22  Coefficient of Determination, r 2, measures the percent of change in y predicted by the change in x  Values range from 0 to 1  Easy to interpret Correlation For the Nodel Construction example: r =.901 r 2 =.81

23 © 2006 Prentice Hall, Inc.4 – 23 Multiple Regression Analysis If more than one independent variable is to be used in the model, linear regression can be extended to multiple regression to accommodate several independent variables y = a + b 1 x 1 + b 2 x 2 … ^ Computationally, this is quite complex and generally done on the computer

24 © 2006 Prentice Hall, Inc.4 – 24 Multiple Regression Analysis y = 1.80 +.30x 1 - 5.0x 2 ^ In the Nodel example, including interest rates in the model gives the new equation: An improved correlation coefficient of r =.96 means this model does a better job of predicting the change in construction sales Sales = 1.80 +.30(6) - 5.0(.12) = 3.00 Sales = $300,000

25 © 2006 Prentice Hall, Inc.4 – 25  Measures how well the forecast is predicting actual values  Ratio of running sum of forecast errors (RSFE) to mean absolute deviation (MAD)  Good tracking signal has low values  If forecasts are continually high or low, the forecast has a bias error Monitoring and Controlling Forecasts Tracking Signal

26 © 2006 Prentice Hall, Inc.4 – 26 Monitoring and Controlling Forecasts Tracking signal RSFEMAD= = ∑(actual demand in period i - forecast demand in period i)  ∑|actual - forecast|/n)

27 © 2006 Prentice Hall, Inc.4 – 27 Tracking Signal Tracking signal + 0 MADs – Upper control limit Lower control limit Time Signal exceeding limit Acceptable range

28 © 2006 Prentice Hall, Inc.4 – 28 Tracking Signal Example Cumulative AbsoluteAbsolute ActualForecastForecastForecast QtrDemandDemandErrorRSFEErrorErrorMAD 190100-10-10101010.0 295100-5-155157.5 3115100+150153010.0 4100110-10-10104010.0 5125110+15+5155511.0 6140110+30+35308514.2

29 © 2006 Prentice Hall, Inc.4 – 29Cumulative AbsoluteAbsolute ActualForecastForecastForecast QtrDemandDemandErrorRSFEErrorErrorMAD 190100-10-10101010.0 295100-5-155157.5 3115100+150153010.0 4100110-10-10104010.0 5125110+15+5155511.0 6140110+30+35308514.2 Tracking Signal Example Tracking Signal (RSFE/MAD) -10/10 = -1 -15/7.5 = -2 0/10 = 0 -10/10 = -1 +5/11 = +0.5 +35/14.2 = +2.5 The variation of the tracking signal between -2.0 and +2.5 is within acceptable limits


Download ppt "© 2006 Prentice Hall, Inc.4 – 1  Short-range forecast  Up to 1 year, generally less than 3 months  Purchasing, job scheduling, workforce levels, job."

Similar presentations


Ads by Google