Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics.

Similar presentations


Presentation on theme: "1 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics."— Presentation transcript:

1 1 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics (Ch 1) Photons & Atoms (Ch 13) Laser Amplifiers (Ch 14) Lasers (Ch 15) Photons in Semiconductors (Ch 16) Semiconductor Photon Detectors (Ch 18) Semiconductor Photon Sources (Ch 17) OpticsPhysicsOptoelectronics

2 2 Optics Ray Optics (Geometrical Optics) Wave Optics (Gaussian Beam) E&M Optics (Geometrical Optics) Quantum Optics (Photon Optics) Focus on location & direction of light rays Limit of Wave Optics where 0 Scalar wave theory (Single scalar wavefunction describes light) Two mutually coupled vector waves ( E & M) Describes certain optical phenomena that are characteristically quantum mechanical E-field of Gaussian Beam 2 1 h h h Stimulated Emission

3 3 Chronological Development of Optics Euclid (300 BC) Hero of Alexandria (150 BC – 250 AD ?) Alhazen (1000 AD) Franciscan Roger Bacon (1215 – 1294) Johannes Kepler (1571 – 1630) Willebrord Snell (1591 – 1626) Rene Descartes (1596 – 1650) Pierre de Fermat (1601 – 1665)

4 4 Simple Optics Spherical Mirror Rays parallel to and close to axis (paraxial) act like a paraboloid mirror Parallel rays further from axis focus to caustic (green line) The caustic is the surface perpendicular to all reflected parallel rays Paraboloid Spherical

5 5 Refraction & Total Internal Reflection Snell’s law of refraction: For Total Internal Reflection:

6 6 Concave & Convex Mirrors z1z1 -R-Rz2z2 0 P1P1 P2P2 C A F y Sign Convention for Mirrors R Negative for Concave Positive for Convex z Negative on Right Positive on Left

7 7 Concave & Convex Mirrors (Paraxial Approximation) z1z1 -R-R z2z2 0 z1z1 0z2z2 R

8 8 Spherical Boundaries Refraction y R P1P1 CP2P2 V

9 9 Sign Conventions for Lenses for light moving Left to Right z 1, f 1 + left of Vertex z 2, f 2 + right of Vertex R+ if C is right of Vertex y 1, y 2 + above optical axis

10 10 Spherical Boundaries Refraction y O zz

11 11 Thin Lenses y O F O f

12 12 Positive Lenses (Thicker Center) Negative Lenses (Thinner Center) Lenses Bi-convex R 1 > 0 R 2 < 0 Planar Convex R 1 = ∞ R 2 < 0 Meniscus Convex R 1 > 0 R 2 > 0 R 2 > R 1 Bi-concave R 1 < 0 R 2 > 0 Planar Concave R 1 = ∞ R 2 > 0 Meniscus Concave R 1 > 0 R 2 > 0 R 1 >R 2

13 13 Ray Transfer Matrix (ABCD Matrix) A method for mapping rays through a series of optical elements. Assumes: –Paraxial approximation (slope = rise/run = tan    ) –Linear relation between exit ( y 2,  2 ) and entrance ( y 1,  1 ) coordinates where A, B, C and D are real. 11 22 y1y1 y2y2 Input Plane Output Plane Optic Axis z1z1 z2z2

14 14 ABCD Matrix Example: Free Space 11 22 y1y1 y2y2 Input Plane Output Plane Optic Axis d z1z1 z2z2

15 15 ABCD Matrix Example: Refraction across planar boundary 11 22 y 1 = y 2 Optic Axis z 1,2

16 16 ABCD Matrix Example: Thin Lens 11 22 Input PlaneOutput Plane Optic Axis z1z1 z2z2 y1y1 y2y2

17 17 Concave Mirrors -R

18 18 Simple Optical Components Free-Space Propagation Refraction at a Planar Boundary Refraction as a Spherical Boundary Transmission Through a Thin Lens Refraction from a Planar Mirror Refraction from a Spherical Mirror convex, R>0 ; concave, R<0 convex, f>0 ; concave, f<0 convex, R>0 ; concave, R<0

19 19 Optical Cavities d R1R1 R2R2 M1M1 M2M2 Unit Cell … dd d

20 20 Explain these lens systems 1.Parallel rays entering the system all exit at the same y 2 2.Rays entering the system at the same point y 1, all exit at y 2. 3.Parallel rays enter system, emerging rays are also parallel 4.Rays emit from a single point, emerge parallel

21 21 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics (Ch 1) Photons & Atoms (Ch 13) Laser Amplifiers (Ch 14) Lasers (Ch 15) Photons in Semiconductors (Ch 16) Semiconductor Photon Detectors (Ch 18) Semiconductor Photon Sources (Ch 17) OpticsPhysicsOptoelectronics

22 22 Chronological Development of Optics (part 2) Robert Hooke (1635 – 1703) Isaac Newton (1642 – 1727) Christian Huygens (1629 – 1695) Thomas Young (1772 – 1829) Augustin Fresnel (1788 – 1827) Speed of Light –Christenson Romer (1644 – 1710) –Armand Fizeau (1819 – 1896) –Jean Bernard Foucault (1819 – 1868)

23 23 Wavefunction (monochromatic)Wave Equation Complex WavefunctionWave Equation Complex AmplitudeHelmholtz Equation Paraxial Wave*Paraxial Helmholtz Equation Wave Optics *A(r) varies slowly with respect to

24 24 Elementary Waves SphericalParaboloidalPlane


Download ppt "1 Introduction to Optical Electronics Quantum (Photon) Optics (Ch 12) Resonators (Ch 10) Electromagnetic Optics (Ch 5) Wave Optics (Ch 2 & 3) Ray Optics."

Similar presentations


Ads by Google