Download presentation
Presentation is loading. Please wait.
Published byGeoffrey Harmon Modified over 9 years ago
1
Charles SCAWTHORN Junji KIYONO Kyoto University Earthquake Risk Reduction 3- Mitigation and ERR Program Development 1. Concepts and Terminology 2. Hazard, Vulnerability & Risk Assessment 3. Mitigation and ERR Program Development
2
Mitigation Risk Mitigation Alternatives Operational Risk Transfer Develop the Program Benefit-cost ratio Acceptable risk Implement the Program Funding Seismic retrofit Emergency planning Maintain the Program Key Terms
3
Mitigation Four basic methods for Mitigation: Structural Locational Operational Risk Transfer
4
Structural (using buildings as an example) (a) moment frame (d) base isolation Bracing Types “K” “V” Chevron eccentric “X” diagonal (b) braced frame (c) shear wall (e) damped frame CPU (f) active control system: ground motion sensor, processor, and controlled mass
5
Seismic Retrofits
6
Locational California Alquist-Priolo fault map, showing location of fault, and zone within which geologic investigation is required AP Zone Fault Actual fault Shaking intensity map
7
Operational EOC Director (Management) Finance/ Administration Logistics Planning/ Intelligence Operations EOC Director (Management) Finance/ Administration Logistics Planning/ Intelligence Operations Operational Area EOC Local Government EOC
8
Single buildings Insurance company Single buildings Insurance company Single buildings Insurance company Reinsurance company Risk Transfer
9
Mitigation of damage and loss is possible at each step of earthquake loss process; earthquake occurs, primary hazards, primary damage, secondary hazard/damage, primary loss, and secondary loss. Risk Mitigation Alternatives EARTHQUAKE OCCURS PRIMARY HAZARDS: Faulting, Shaking, Liquefaction, Landsliding, Tsunami… SECONDARY LOSS: Business / Operations Interruption Market Share, Reputation… PRIMARY LOSS: Life / Injury, Repair Costs, Function, Communications/Control… SECONDARY HAZARD / DAMAGE: Fire, Hazmat, Flooding… PRIMARY DAMAGE: Building / Structural Nonstructural / Equipment MITIGATION Improved emergency planning and response; insurance… Hazard mapping; ground remediation; tsunami walls… Bracing and strengthening, reduction of mass, base isolation, structural control… Improved storage/infrastructure, better emergency response… RESULT Demand (hazard) eliminated or reduced Capacity (strength…) increased Loss avoided or shared Secondary demands eliminated or reduced
10
Earthquakes are a problem, in the most general sense, solving a problem has three basic phases. Phase 1: Understanding the problem Phase 2: Finding the solution Phase 3: Putting the solution into effect Outline of Risk Reduction Program Pre-program Assess the Risk Develop the Program N Acceptable? Y Stop Acceptable? Y N Implement the Program Maintain the Program Factors - Seismic environment? - Organization / decision- making - Responsibility / liability Data - Seismic hazard - Exposure - life - property - business / function - revenue - data - market share - reputation / image - Vulnerability - Assessment Mitigation Options - Locational - Redundancy / backup - Move - Structural - Strengthen structures - Brace equpment / furnishings - Operational - Emerency Plan - Backup data - Transfer - Insurance - Contracts
11
Measuring Benefits Internal Rate of Return is the discount rate that “sets the net present value of the stream of net benefits [and costs] equal to zero”- effectively a measure of the return on investment Benefit Cost Ratio Life Cycle Cost Cost Damage $ Design Level Tot Cost Constr. Cost
12
Identify the assets (people, property, function) at risk. The corresponding losses for people, property and function are death and injury, financial loss, and business interruption, revenue, market share. Establishing (i.e. quantifying) the seismic hazard It is a representation of how strongly the ground will shake and how often it is likely to do so. Developing performance objectives No loss of life (no significant collapse hazard), limited property loss, no loss of essential equipment, and restoration of operation onsite or backup site within the time appropriate for the organization. Performing first a risk screening and then, for selected structures, a more detailed review Assess the Risk
13
Developing the program, which consists of determining the acceptable risk, the opinions that exist for reducing the current risk to an acceptable level, the costs of doing that, and how it should be accomplished. Having performed risk screening, facilities may be usefully grouped into several categories, such as I.Probable high risk II.Possible high risk III. Probable low risk The category I and category II facilities should be subjected to a more detailed analysis. All the category I and II facilities can be ranked according to their risk, mitigation costs, or other criteria. The ranking is based on a benefit-cost ratio. The final decision as to what facilities to mitigate will depend on available budget and is the final expression of the organization’s acceptable risk. Develop the Program
14
Retaining seismic retrofit design professionals: Initial investigation and screening Detailed investigation and conceptual retrofit design Construction documents and construction support Funding the program; the following sources should generally considered when planning programs of seismic mitigation. General operating and maintenance funds Bond issues Special use fee Hazard mitigation grants Tax preferences and credits Coordinating with other parts of the organization; it is very important to include earthquake risk mitigation measures with other facets of an organization’s asset management program. Implement the Program
15
Organizations are dynamic and facilities, operations, and personnel are constantly changing. Thus documentation of the step taken, including the process and criteria, is an important step to complete. As new facilities or operations are developed, the same or enhanced criteria can be applied to them, thus retaining the overall balance of earthquake mitigation program. As new personnel join the organization, they can review the earthquake mitigation program documentation and maintain the overall goals. Maintain the Program
16
Summary An Earthquake Risk Reduction Program involves the following steps: 1.ASSETS: Identify and map the assets at risk – the people, property, business and cultural treasures. Where are they, how many are they, what is their value? 2.HAZARDS: Map the earthquake hazards that threaten these assets. Hazards include faulting, shaking, liquefaction, tsunami, landslide, fire. 3.VULNERABILITY: Assess the vulnerability of each asset to the hazards – is an highly vulnerable, moderately, or just low? 4.ANALYZE: Combine the information on Assets, Hazards and Vulnerability into a Risk Analysis. Map the areas of High Risk. 5.MITIGATION: Based on the assets, hazards and vulnerabilities, identify various ways in which the risk can be lowered. Select the mitigation method that makes the most sense – ie, is most effective for the least cost. 6.DEVELOP THE PROGRAM: Having a mitigation package, gather community support and find ways to pay for the mitigation. Develop a Plan for doing the mitigation over a several year timeframe. 7.IMPLEMENT THE PROGRAM: Do it. Don’t stop. Earthquakes won’t wait.
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.