Presentation is loading. Please wait.

Presentation is loading. Please wait.

Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3

Similar presentations


Presentation on theme: "Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3"— Presentation transcript:

1 Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
First-Principles Study of Large Magnetoelectric Coupling in Triangular Lattices Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3 Materials Research Laboratory, University of California, Santa Barbara, USA Zernike Institute for Advanced Materials, University of Groningen, The Netherlands Materials Department, University of California, Santa Barbara, USA Supported by NSF MRSEC Award No. DMR

2 Magnetoelectrics Linear Magnetoelectric tensor:
Non-zero a requires T,I symmetry breaking Size limit (in bulk): M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005)

3 Magnetoelectric Symmetry Requirements
Which materials break time-reversal AND space-inversion symmetry? ferroelectric ferromagnets MULTIFERROICS certain anti-ferromagnets OR + Large ε, μ  potentially large α - Few materials at room T NA Hill, JPCB 104, 6694 (2000) + Many materials - Weak - relies on S.O. Our route: superexchange-driven magnetoelectric coupling

4 Anderson-Kanamori-Goodenough rules:
Superexchange Mn-O-Mn Superexchange Superexchange magnetoelectricity: θ Anderson-Kanamori-Goodenough rules: J(θ=90º)<0 (FM) J(θ=180º)>0 (AFM) S1 S2 E=0 E E

5 Superexchange-driven Magnetoelectricity
Can occurs in geometrically frustrated AFM Route to bulk materials Mechanism: Anderson-Kanamori-Goodenough rules: J(θ=90º)<0 (FM) J(θ=180º)>0 (AFM)

6 “Antimagnetoelectric”
Kagomé Lattices E M=0 “Antimagnetoelectric” E=0 Example Spin Structure

7 Triangular Lattices in Real Materials
YMnO3 Structure: BAS B. VAN AKEN et al, Nature Materials 3, 164 (2004)

8 Breaking Self Compensation: No Vertex Sharing
Break self compensation: One triangle sense per layer CaAlMn3O7

9 Calculation Details Vienna Ab initio Simulation Package (VASP) [1]
Density functional theory (DFT) Plane-wave basis; periodic boundary conditions Local spin density approximation (LSDA) Hubbard U for Mn d electrons (U=5.5 eV, J=0.5 eV) [3] PAW Potentials [2] Non-collinear Magnetism No spin-orbit interaction Finite electric field Ionic response only Forces = Z*E Z* from Berry Phase [4] Invert force matrix to deduce DR [1] G. Kresse and J. Furthmüller, Phys. Rev. B 54, (1996). [2] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). [3] Z. Yang et al, Phys. Rev. B 60, (1999). [4] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

10 DFT-LDA Electronic Structure; E=0
Crystal-field splitting and occupations for high-spin Mn3+ Ground-state magnetic structure from LSDA+U dz2 3d dx2-y2 dxy dxz dyz Local moment = 4μB/Mn Net magnetization = 0 μB

11 Magnetoelectric Coupling
Magnetoelectric Response: Compare: Cr2O3 E m small effect: E field of 106 V/cm produces M equivalent to reversing 5 out of 106 spins in the AFM lattice

12 Conclusions Superexchange-driven Magnetoelectricity:
Proposed new structure Triangular lattice: uniform orientation in each plane No vertex sharing with triangles of opposite sense Key: avoid self-compensation in periodic systems New materials under investigation

13 Electric Field Application (Ionic Response)
Force on ion in applied electric field: where Force-constant Matrix Equilibrium under applied field (assume linear):


Download ppt "Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3"

Similar presentations


Ads by Google