Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spectroscopy and New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration B. Golob, Belle Lake Louise Winter Inst., 2006.

Similar presentations


Presentation on theme: "Spectroscopy and New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration B. Golob, Belle Lake Louise Winter Inst., 2006."— Presentation transcript:

1 Spectroscopy and New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration B. Golob, Belle Lake Louise Winter Inst., 2006 Experimental environment X(3872) quant. numbers  → Z(3930) -  c2 ’ Y(3940) X(3940) Summary

2 Experimental environment B. Golob, Belle Lake Louise Winter Inst., 2006 ~1 km in diameter Mt. Tsukuba KEKB Belle 8 GeV e - 3.5 GeV e + KEKB asymmetric B factory Υ(4s) e+e+ e-e- B B > 1 fb -1 /day (>1 M BB/day) ∫Ldt ~ 500 fb -1 on reson. 50 fb -1 off reson. ~550 M BB available data Integrated luminosity May ‘99 Feb ‘06 e+e+ e-e- ** u,d,s,c Belle

3 X(3872) Observed by Belle B ± → K ±  +  - J/  152M BB,PRL91,262001(2003) B. Golob, Belle Lake Louise Winter Inst., 2006 275M BB,hep-ex/0505038 Br(B→XK) Br(X→  +  - J/  = (1.31±0.24±0.13)x10 -5 B ± → K ±  J/  275M BB,hep-ex/0505037 B ± → K ±  c   J  calibration mode,  0 veto no. of B’s in bins of M(  J  ) 13.6±4.4 evts.(4  ) C(X(3872))=+1 M=3872 MeV/c 2  =13 MeV/c 2 charmonium, DD*, tetraquarks...? world average: M=3871.9±0.5 MeV/c 2 M(  +  - l + l - )-M(l + l - ) X(3872) E.S.Swanson,PLB588,189(2004) L.Maiani et al.,PRD71,014028(2005) ’’

4 X(3872) B. Golob, Belle Lake Louise Winter Inst., 2006  ++ -- l+l+ l-l- X(J/  ) angular distributions in B ± → K ± X(  +  - J/  ) examples: |cos  | side band  2 /nof=31/9 275M BB,hep-ex/0505038 X→ J/  S-wave expected  -- ++ K B X(J/  ) J PC =0 ++ J PC =1 ++ |cos  |  2 /nof=5/9  X →  J/   ang. distrib.  M(  +  - ) in X→  +  - J/  disfavor all of J=0,1,2 cc states except 1 ++, 2 ++ X→ D 0 D 0  0 ?? 1 ++ →DD* S-wave 2 ++ →DD* D-wave, suppressed by (q*) 2L+1

5 preliminary X(3872) B. Golob, Belle Lake Louise Winter Inst., 2006 N=12.5±3.9 (>5  ) Br(B  K X)  Br(X  DD  ) =(1.6±0.4±0.3)  10 -4 B→KD 0 D 0  0 /KD 0 D* 0 M(D 0 D 0  0 ) in B signal region M(D 0 D 0  0 ) ≈ M(X) Br(X  DD  )/Br(X→  +  - J/  =12±5 hard to accomodate with a 2 ++ state J PC (X(3872))=1 ++

6 Z(3930) B. Golob, Belle Lake Louise Winter Inst., 2006 395fb -1,hep-ex/0512035 acc. to PRL e+e+ e-e- D D    un-tagged  D 0 →K , K  0, K3  D + →K   p t (DD)<0.05 GeV/c 64±18 evts M=3929±5±2 MeV/c 2  =29±10±2 MeV M(DD)[GeV/c 2 ] D side band acceptance corrected D side band J=2 expect.  2 /nof=1.9/9 J=0 expect.  2 /nof=23.4/9 Z ≡  c2 ’ 2 3 P 2 cc 5.3   *: D, beam axis in  frame S.Godfrey,N.Isgur,PRD32,189 (1985) C.R.Münz,Nucl.Phys.A609,364 (1996)

7 B. Golob, Belle Lake Louise Winter Inst., 2006 275M BB, PRL94, 182002(2005) M 2 (J/   ) M 2 (K  ) Dalitz plot for B → K  J/  B ± → K * J/  K *  → K ±  resonant structure? M(Y)=3943±11±13 MeV  =87±22±26 MeV 58 ± 11 evts. >8  Y(3940) No. of B’s in bins of M(  J/  ) M(J/   ) Br(B → YK) Br(Y →  J/  )= (7.1±1.3±3.1) x10 -5 radially excited P-wave cc? large Br(Y→  J /  ) cc-gluon hybrid? suppressed D ( * ) D ( * ) decays predicted M≥4.3 GeV F.E.Close,P.R.Page, Nucl.Phys.B443,233(1995) C.Banner et al., PRD56,7039(1997)

8 J/  X e-e- e+e+ Reconstruct J/  →  l + l - recoil mass (mass of X): X(3940) B. Golob, Belle Lake Louise Winter Inst., 2006 357fb -1,hep-ex/0507019 subm. to PRL 266±63 evts M~3936 MeV/c 2  (M rec )~ 30 MeV/c 2 55 X(3940)→D ( * ) D ? reconstruct J/  + one D constrain M rec ( J/  D)=M(D ( * ) )  (M rec ( J/  ))~10 MeV/c 2 M rec ( J/  D)=M(D) M rec ( J/  D)=M(D*) M=3943±6±6 MeV/c 2  <52 MeV @90% C.L. 24.5±6.9 evts 5 

9 X(3940) B. Golob, Belle Lake Louise Winter Inst., 2006 357fb -1,hep-ex/0507019 subm. to PRL no evidence for X(3940)→J/  X(3940)≠Y(3940) inclusive/D*D tagged sample, common evts removed B >2 (X→D*D) > 45% @90% C.L. B(X→D D) < 41% @90% C.L. B(X→J/  ) < 26% @90% C.L. several speculations on X(3940) nature, all pro’s and con’s; further experimental study (ang. distrib.)

10 Summary  KEKB is also a great source of charm & cc states  Some expected, ma ny unexpected/puzzling observations/discoveries understanding range of questions: what are they? anomalous properties? all properties as expected? D sJ X(3872) Y(3940) X(3940)  c (2800) broad D ** PQ B. Golob, Belle Lake Louise Winter Inst., 2006  c2 ’ existence?

11 new stateproductiondecay modeto establish next reference X(3872)B → KX  +  - J/   +  -  0 (  ) J/   J/  quantum num., decay modes hep-ex/0408116 hep-ex/0505038 hep-ex/0505037  c2 ’  DDquantum num. hep-ex/0512035 Y(3940)B → KY  J/  decay modes PRL94,182002(2005) X(3940)continuum, cc recoil M recoil,DD * quantum num. hep-ex/0507019 broad D ** B → D **  + D (*)  Br’s PRD69,112002 hep-ex/0412072  c (2800) continuum c+c+ ,  (mixing) PRL94,122002(2005) D sJ continuum B → DD sJ, B → D sJ K D s  0, D s *  0, D s  Br’s BELLE-CONF-0461 hep-ex/0507064  c (2s) continuum, cc recoil M recoil  PRD(R)70,071102  + (1540) sec. int. pKpK S existence? PLB632,173(2005)  +,  *++,  c 0,  c *+ B decayspK S,pK +, D ( * )- p,D 0 p existence? hep-ex/0411005


Download ppt "Spectroscopy and New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration B. Golob, Belle Lake Louise Winter Inst., 2006."

Similar presentations


Ads by Google