Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 15: Genetics.

Similar presentations


Presentation on theme: "Chapter 15: Genetics."— Presentation transcript:

1 Chapter 15: Genetics

2 Chromosome Theory of Inheritance
The chromosome theory of inheritance states: Mendelian genes have specific loci (positions) on chromosomes Chromosomes undergo segregation and independent assortment

3 0.5 mm All F1 plants produce yellow-round seeds (YyRr) F1 Generation
Fig. 15-2b All F1 plants produce yellow-round seeds (YyRr) 0.5 mm F1 Generation R R y y r r Y Y LAW OF SEGREGATION The two alleles for each gene separate during gamete formation. Meiosis LAW OF INDEPENDENT ASSORTMENT Alleles of genes on nonhomologous chromosomes assort independently during gamete formation. R r r R Metaphase I Y y Y y 1 1 R r r R Anaphase I Y y Y y R r Metaphase II Figure 15.2 The chromosomal basis of Mendel’s laws r R 2 2 Y y Y y y Y Y Y Y y y y Gametes R R r r r r R R 1 4 YR 1 4 yr 1 4 Yr 1 4 yR 3 3

4 Morgan’s Experimental Evidence:
The first solid evidence associating a specific gene with a specific chromosome came from Thomas Hunt Morgan, an embryologist Morgan’s experiments with fruit flies provided convincing evidence that chromosomes are the location of Mendel’s heritable factors

5 Morgan’s Choice of Experimental Organism
Several characteristics make fruit flies a convenient organism for genetic studies: They breed at a high rate A generation can be bred every two weeks They have only four pairs of chromosomes

6 Morgan noted wild type, or normal, phenotypes that were common in the fly populations
Traits alternative to the wild type are called mutant phenotypes

7 Fig. 15-3 Figure 15.3 Morgan’s first mutant

8 Sex-linkage: In one experiment, Morgan mated male flies with white eyes (mutant) with female flies with red eyes (wild type) The F1 generation all had red eyes The F2 generation showed the 3:1 red:white eye ratio, but only males had white eyes Morgan determined that the white-eyed mutant allele must be located on the X chromosome Morgan’s finding supported the chromosome theory of inheritance

9 EXPERIMENT P  Generation F1 All offspring Generation had red eyes
Fig. 15-4a EXPERIMENT P Generation F1 All offspring had red eyes Generation Figure 15.4 In a cross between a wild-type female fruit fly and a mutant white-eyed male, what color eyes will the F1 and F2 offspring have?

10 RESULTS F2 Generation Fig. 15-4b
Figure 15.4 In a cross between a wild-type female fruit fly and a mutant white-eyed male, what color eyes will the F1 and F2 offspring have?

11 CONCLUSION + P X X Generation  X Y + Sperm Eggs + + F1 + Generation +
Fig. 15-4c CONCLUSION + P w w X X Generation X Y + w w Sperm Eggs + + F1 w w + Generation w w + w Figure 15.4 In a cross between a wild-type female fruit fly and a mutant white-eyed male, what color eyes will the F1 and F2 offspring have? Sperm Eggs + + w w + F2 w Generation w w w + w

12 The Chromosomal Basis of Sex
In humans and other mammals, there are two varieties of sex chromosomes: a larger X chromosome and a smaller Y chromosome Only the ends of the Y chromosome have regions that are homologous with the X chromosome The SRY gene on the Y chromosome codes for the development of testes

13 Fig. 15-5 X Y Figure 15.5 Human sex chromosomes

14 Females are XX, and males are XY
Each ovum contains an X chromosome, while a sperm may contain either an X or a Y chromosome

15 (a) The X-Y system 44 + XY 44 + XX Parents 22 + X 22 + X 22 + Y or +
Fig. 15-6a 44 + XY 44 + XX Parents 22 + X 22 + X 22 + Y or + Sperm Egg Figure 15.6 Some chromosomal systems of sex determination 44 + XX 44 + XY or Zygotes (offspring) (a) The X-Y system

16 Genes on X and Y chromosomes:
The sex chromosomes have genes for many characters unrelated to sex A gene located on either sex chromosome is called a sex-linked gene In humans, sex-linked usually refers to a gene on the larger X chromosome

17 Sex-linked genes follow specific patterns of inheritance
For a recessive sex-linked trait to be expressed A female needs two copies of the allele A male needs only one copy of the allele Sex-linked recessive disorders are much more common in males than in females Why?

18 (a) (b) (c) Sperm Sperm Sperm Eggs Eggs Eggs XNXN  XnY XNXn  XNY
Fig. 15-7 XNXN XnY XNXn XNY XNXn XnY Sperm Xn Y Sperm XN Y Sperm Xn Y Eggs XN XNXn XNY Eggs XN XNXN XNY Eggs XN XNXn XNY XN XNXn XNY Xn XnXN XnY Xn XnXn XnY Figure 15.7 The transmission of sex-linked recessive traits (a) (b) (c)

19 Some disorders caused by recessive alleles on the X chromosome in humans:
Color blindness Duchenne muscular dystrophy Hemophilia

20 X Inactivation in Female Mammals
In mammalian females, one of the two X chromosomes in each cell is randomly inactivated during embryonic development The inactive X condenses into a Barr body If a female is heterozygous for a particular gene located on the X chromosome, she will be a mosaic for that character

21 X chromosomes Allele for orange fur Early embryo: Allele for black fur
Fig. 15-8 X chromosomes Allele for orange fur Early embryo: Allele for black fur Cell division and X chromosome inactivation Two cell populations in adult cat: Active X Inactive X Active X Black fur Orange fur Figure 15.8 X inactivation and the tortoiseshell cat

22 Linked Genes Each chromosome has hundreds or thousands of genes
Genes located on the same chromosome that tend to be inherited together are called linked genes

23 How Linkage Affects Inheritance
Morgan did other experiments with fruit flies to see how linkage affects inheritance of two characters Morgan crossed flies that differed in traits of body color and wing size

24 b+ vg+ b vg  Parents in testcross b vg b vg b+ vg+ b vg Most or
Fig. 15-UN1 b+ vg+ b vg Parents in testcross b vg b vg b+ vg+ b vg Most offspring or b vg b vg

25 Morgan found that body color and wing size are usually inherited together in specific combinations (parental phenotypes) He noted that these genes do not assort independently, and reasoned that they were on the same chromosome

26 However, nonparental phenotypes were also produced
Understanding this result involves exploring genetic recombination, the production of offspring with combinations of traits differing from either parent

27 Recombinants Mendel observed that combinations of traits in some offspring differ from either parent Offspring with a phenotype matching one of the parental phenotypes are called parental types Offspring with nonparental phenotypes (new combinations of traits) are called recombinant types, or recombinants A 50% frequency of recombination is observed for any two genes on different chromosomes

28 YR yr Yr yR yr YyRr yyrr Yyrr yyRr Gametes from yellow-round
Fig. 15-UN2 Gametes from yellow-round heterozygous parent (YyRr) YR yr Yr yR Gametes from green- wrinkled homozygous recessive parent ( yyrr) yr YyRr yyrr Yyrr yyRr Parental- type offspring Recombinant offspring

29 Crossing Over Morgan discovered that genes can be linked, but the linkage was incomplete, as evident from recombinant phenotypes Morgan proposed that some process must sometimes break the physical connection between genes on the same chromosome That mechanism was the crossing over of homologous chromosomes

30 965 944 Black- vestigial 206 Gray- vestigial 185 Black- normal
Fig b Recombinant chromosomes b+ vg+ b vg b+ vg b vg+ Eggs Testcross offspring 965 Wild type (gray-normal) 944 Black- vestigial 206 Gray- vestigial 185 Black- normal b vg b+ vg+ b vg b+ vg b vg+ Figure Chromosomal basis for recombination of linked genes b vg b vg b vg b vg Sperm Parental-type offspring Recombinant offspring Recombination frequency 391 recombinants =  100 = 17% 2,300 total offspring

31 Genetic Mapping Alfred Sturtevant, one of Morgan’s students, constructed a genetic map, an ordered list of the genetic loci along a particular chromosome Sturtevant predicted that the farther apart two genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency

32 A linkage map is a genetic map of a chromosome based on recombination frequencies
Distances between genes can be expressed as map units; one map unit, or centimorgan, represents a 1% recombination frequency Map units indicate relative distance and order, not precise locations of genes

33 RESULTS Recombination frequencies 9% 9.5% Chromosome 17% b cn vg
Fig RESULTS Recombination frequencies 9% 9.5% Chromosome 17% Figure Constructing a linkage map b cn vg

34 Mutant phenotypes Short aristae Black body Cinnabar eyes Vestigial
Fig Mutant phenotypes Short aristae Black body Cinnabar eyes Vestigial wings Brown eyes 48.5 57.5 67.0 104.5 Figure A partial genetic (linkage) map of a Drosophila chromosome Long aristae (appendages on head) Gray body Red eyes Normal wings Red eyes Wild-type phenotypes

35 :Alterations of chromosome number or structure cause some genetic disorders
Large-scale chromosomal alterations often lead to spontaneous abortions (miscarriages) or cause a variety of developmental disorders

36 Abnormal Chromosome Number
In nondisjunction, pairs of homologous chromosomes do not separate normally during meiosis As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy

37 Meiosis I Meiosis II Gametes (a) Nondisjunction of homologous
Fig Meiosis I Nondisjunction Meiosis II Nondisjunction Gametes Figure Meiotic nondisjunction n + 1 n + 1 n – 1 n – 1 n + 1 n – 1 n n Number of chromosomes (a) Nondisjunction of homologous chromosomes in meiosis I (b) Nondisjunction of sister chromatids in meiosis II

38 Aneuploidy results from the fertilization of gametes in which nondisjunction occurred
Offspring with this condition have an abnormal number of a particular chromosome

39 A monosomic zygote has only one copy of a particular chromosome
A trisomic zygote has three copies of a particular chromosome

40 Polyploidy is common in plants, but not animals
Polyploidy is a condition in which an organism has more than two complete sets of chromosomes Triploidy (3n) is three sets of chromosomes Tetraploidy (4n) is four sets of chromosomes Polyploidy is common in plants, but not animals Polyploids are more normal in appearance than aneuploids

41 Fig Figure A tetraploid mammal

42 Alterations of Chromosome Structure
Breakage of a chromosome can lead to four types of changes in chromosome structure: Deletion removes a chromosomal segment Duplication repeats a segment Inversion reverses a segment within a chromosome Translocation moves a segment from one chromosome to another

43 Reciprocal translocation
Fig A B C D E F G H A B C E F G H Deletion (a) A B C D E F G H A B C B C D E F G H Duplication (b) A B C D E F G H A D C B E F G H (c) Inversion Figure Alterations of chromosome structure A B C D E F G H M N O C D E F G H (d) Reciprocal translocation M N O P Q R A B P Q R

44 Down Syndrome (Trisomy 21)
Down syndrome is an aneuploid condition that results from three copies of chromosome 21 It affects about one out of every 700 children born in the United States The frequency of Down syndrome increases with the age of the mother, a correlation that has not been explained

45 Figure Down syndrome

46 Aneuploidy of Sex Chromosomes
Nondisjunction of sex chromosomes produces a variety of aneuploid conditions Klinefelter syndrome is the result of an extra chromosome in a male, producing XXY individuals Monosomy X, called Turner syndrome, produces X0 females, who are sterile; it is the only known viable monosomy in humans

47 Disorders Caused by Structurally Altered Chromosomes
The syndrome cri du chat (“cry of the cat”), results from a specific deletion in chromosome 5 A child born with this syndrome is mentally retarded and has a catlike cry; individuals usually die in infancy or early childhood Certain cancers, including chronic myelogenous leukemia (CML), are caused by translocations of chromosomes

48 Translocated chromosome 22 (Philadelphia chromosome)
Fig Reciprocal translocation Normal chromosome 9 Translocated chromosome 9 Translocated chromosome 22 (Philadelphia chromosome) Normal chromosome 22 Figure Translocation associated with chronic myelogenous leukemia (CML)

49 Exceptions to Chromosome Theory
There are two normal exceptions to Mendelian genetics One exception involves genes located in the nucleus, and the other exception involves genes located outside the nucleus

50 Genomic Imprinting For a few mammalian traits, the phenotype depends on which parent passed along the alleles for those traits Such variation in phenotype is called genomic imprinting Genomic imprinting involves the silencing of certain genes that are “stamped” with an imprint during gamete production

51 Normal Igf2 allele is expressed Paternal chromosome Maternal
Fig a Normal Igf2 allele is expressed Paternal chromosome Maternal chromosome Normal Igf2 allele is not expressed Wild-type mouse (normal size) Figure Genomic imprinting of the mouse Igf2 gene (a) Homozygote

52 Mutant Igf2 allele Mutant Igf2 allele inherited from mother
Fig b Mutant Igf2 allele inherited from mother Mutant Igf2 allele inherited from father Normal size mouse (wild type) Dwarf mouse (mutant) Normal Igf2 allele is expressed Mutant Igf2 allele is expressed Figure Genomic imprinting of the mouse Igf2 gene Mutant Igf2 allele is not expressed Normal Igf2 allele is not expressed (b) Heterozygotes

53 Inheritance of Organelle Genes
Extranuclear genes (or cytoplasmic genes) are genes found in organelles in the cytoplasm Mitochondria, chloroplasts, and other plant plastids carry small circular DNA molecules Extranuclear genes are inherited maternally because the zygote’s cytoplasm comes from the egg The first evidence of extranuclear genes came from studies on the inheritance of yellow or white patches on leaves of an otherwise green plant Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

54 Fig Figure Variegated leaves from Croton dioicus

55 Some defects in mitochondrial genes prevent cells from making enough ATP and result in diseases that affect the muscular and nervous systems For example, mitochondrial myopathy and Leber’s hereditary optic neuropathy Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

56 The alleles of unlinked genes are either on separate chromosomes
Fig. 15-UN4 Sperm Egg C B A c b a P generation gametes D E d e + F f The alleles of unlinked genes are either on separate chromosomes (such as d and e) or so far apart on the same chromosome (c and f ) that they assort independently. This F1 cell has 2n = 6 chromosomes and is heterozygous for all six genes shown (AaBbCcDdEeFf ). Red = maternal; blue = paternal. D e C B d Each chromosome has hundreds or thousands of genes. Four (A, B, C, F) are shown on this one. A Genes on the same chromo- some whose alleles are so close together that they do not assort independently (such as a, b, and c) are said to be linked. E F f a c b

57 Fig. 15-UN5


Download ppt "Chapter 15: Genetics."

Similar presentations


Ads by Google