Presentation is loading. Please wait.

Presentation is loading. Please wait.

Blood Lactate Accumulation and Removal Effects on Blood Lactate Concentration.

Similar presentations


Presentation on theme: "Blood Lactate Accumulation and Removal Effects on Blood Lactate Concentration."— Presentation transcript:

1 Blood Lactate Accumulation and Removal Effects on Blood Lactate Concentration

2 Lactate Response to Prolonged Exercise (70% of VO 2max ) (Kolkhorst & Buono, Virtual Exercise Physiology Lab, 2004)

3 Lactate Response to Prolonged Exercise

4 Lactate Response to Incremental Exercise (endurance-trained athlete) (Kolkhorst & Buono, Virtual Exercise Physiology Lab, 2004)

5 Anaerobic Threshold: Does it Exist? (or blood lactate inflection point?) Wasserman et al. (1973) proposed that muscle became hypoxic at higher intensities and thus produce ATP and lactate anaerobically as well as  VE Challenges to Wasserman theory –McArdle's syndrome patients lack phosphorylase still demonstrate VT –does muscle become hypoxic? –are there other factors that explain the sudden increase in blood La?

6 Muscle intracellular PO 2 and net lactate release. Note that PO 2 remains above critical mitochondrial O 2 tension (1 torr). Relationship between mitochondrial VO 2 and PO 2. Critical mitochondrial PO 2 is around 1.0 torr. Mitochondrial PO 2 during exercise

7 Motor Unit Recruitment Pattern -- Size Principle

8 La and EPI Response to Exercise La EPI

9 Metabolic Fate of Lactate

10 Lactate Shuttle

11 Cori Cycle

12 Influence of exercise intensity on rate of blood La clearance during recovery

13 Metabolic Fate of Lactate During exercise: –~¾ oxidized by heart, liver, and ST fibers During recovery: –oxidized by heart, ST fibers, and liver (1  fate) –converted to glycogen –incorporated into amino acids –La metabolism depends on metabolic state

14 Fate of lactate under three conditions 4 hr after injection. Note that oxidation is the 1  pathway of removal.

15 Effect of Altitude on La Response At altitude: blood [La] is higher at same absolute workloads muscle blood flow similar at same absolute workloads La threshold occurs at same relative intensity EPI threshold occurs earlier at altitude Lactate paradox – peak [La] is less under hypoxic conditions than at normoxia

16 Determining lactate turnover during exercise: tracer methodology use naturally occurring isotopes – 13 C and 2 H isotopes most commonly used pulse injection tracer technique –isotopically-labeled La added to blood in single bolus –concentration measurements taken over time –rate of concentration decline represents turnover rate

17 Pulse injection tracer technique

18 Continuous-infusion tracer techniques Continuous-infusion technique –isotopically-labeled La added at increasing rate until equilibrium point is reached La appearance = La removal Primed continuous-infusion technique –priming bolus of isotopically-labeled La added initially speeds time to reach equilibrium –remaining isotopically-labeled La added at continuous, constant rate –[isotope] depends on rate of infusion and volume of distribution (estimated)

19 Continuous infusion tracer technique

20 Primed continuous-infusion technique (used by Stanley et al. and MacRae et al.) turnover rate = appearance - disappearance Ra dependent on: –volume of distribution –arterial [La] Rd = Ra minus arterial [La] metabolic clearance rate (MCR) = Rd / [La] –calculates La clearance rate relative to arterial [La] –increasing MCR indicates Rd is dependent upon [La]

21 Read one of the following articles for next Tuesday Holden, S.-MacRae, S.C. Dennis, A.N. Bosch, and T.D. Noakes. Effects of training on lactate production and removal during progressive exercise in humans. J. Appl. Physiol. 72: 1649-1656, 1992. Stanley, W.C., E.W. Gertz, J.A. Wisneski, D.L. Morris, R. Neese, and G.A. Brooks. Systemic lactate turnover during graded exercise in man. Am. J. Physiol. 249 (Endocrinol. Metab. 12): E595-E602, 1985.

22 Lactate response to graded exercise (Stanley et al., JAP, 1985) Ra and Rd exponentially related to VO 2 linear relationship between arterial [La] and Ra curvilinear relationship between arterial [La] and Rd

23 Effects of exercise intensity on rate of lactate appearance and removal

24 Rates of blood lactate appearance (Ra) and disappearance (Rd) during graded exercise before and after training MacRae et al., JAP, 1992

25 Training adaptations to lactate kinetics (MacRae et al., JAP, 1992) submaximal Ra  by training peak Ra similar regardless of training status at same relative intensities, Ra was  at 60% Rd  by training peak Rd  at same relative intensities, Rd was similar at 60% MCR  at higher exercise intensity and  with training

26 Effect of training on blood lactate response 65% pre-training 65% post-training – same relative workload 45% post-training – same absolute workload 45% pre-training


Download ppt "Blood Lactate Accumulation and Removal Effects on Blood Lactate Concentration."

Similar presentations


Ads by Google