Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cheng, Chen, Chen, Xie Evaluating Probability Threshold k- Nearest-Neighbor Queries over Uncertain Data Reynold Cheng (University of Hong Kong) Lei Chen.

Similar presentations


Presentation on theme: "Cheng, Chen, Chen, Xie Evaluating Probability Threshold k- Nearest-Neighbor Queries over Uncertain Data Reynold Cheng (University of Hong Kong) Lei Chen."— Presentation transcript:

1 Cheng, Chen, Chen, Xie Evaluating Probability Threshold k- Nearest-Neighbor Queries over Uncertain Data Reynold Cheng (University of Hong Kong) Lei Chen (Hong Kong University of Science &Tech) Jinchuan Chen (Hong Kong Polytechnic University) Xike Xie (University of Hong Kong) International Conference on Extending Database Technology 2009

2 Cheng, Chen, Chen, Xie Agenda 1. Introduction 2. Problem Definition 3. Basic Solution 4. Efficient Solution 5. Results

3 Cheng, Chen, Chen, Xie Data Uncertainty Inherent in various applications  Location-based services (e.g., using GPS, RFID) [TDRP98, SSDBM99]  Natural habitat monitoring with sensor networks [VLDB04a]  Biomedical and biometric databases[ICDE06, ICDE07]

4 Cheng, Chen, Chen, Xie Attribute Uncertainty Model [TDRP98,ISSD99,VLDB04b] pdf y (pdf) Uncertainty region We represent an uncertainty pdf as a histogram

5 Cheng, Chen, Chen, Xie k-NN Queries k-NN Query over Precise Data - application in LBS [VLDB03] - natural habitat monitoring system [VLDB04a] - network traffic analysis [ICDCS07] - pattern matching in CAM [VLDB04c] k-NN over Uncertain Objects - [VLDB08a] ranks the probability each object is the NN of the query point. - [ICDE07a] use expected distance and does not discuss the probability.

6 Cheng, Chen, Chen, Xie Agenda 1. Introduction 2. Problem Definition 3. Basic Solution 4. Efficient Solution 5. Results

7 Cheng, Chen, Chen, Xie Probability Threshold k-Nearest-Neighbor Query (T-k-PNN) INPUT 1. A query point q, parameter k, threshold T 2. A set of n objects with uncertainty regions and pdfs OUTPUT A number of k-subset  p(S) is the qualification probability of the k-subset S

8 Cheng, Chen, Chen, Xie Example of a k-PNN query (k=3) {O 1, O 2, O 3 } {O 1, O 2, O 4 } O2O2 O3O3 O1O1 O4O4 O5O5 O6O6 O7O7 O8O8 q

9 Cheng, Chen, Chen, Xie Example of a k-PNN query (k=3) O2O2 O3O3 O1O1 O4O4 O5O5 O6O6 q {O 1, O 2, O 3 } {O 1, O 2, O 4 } … {O 6, O 7, O 8 } k-bound {O 1, O 2, O 3 } {O 1, O 2, O 4 } … {O 4, O 5, O 6 } O7O7 O8O8

10 Cheng, Chen, Chen, Xie k-bound Filtering (k=3) O2O2 O3O3 O1O1 O4O4 O5O5 O6O6 q k-bound O7O7 O8O8 f1f1 f2f2 f3f3 f k (k-bound): is the k-th minimum maximum distance Since min(r 7 )> f 3, O 7 can not be 3-NN of q. Because there are always 3 objects with distances smaller than f 3. We apply k-bound filtering on an index (e.g. R-tree) to prune unqualified objects.

11 Cheng, Chen, Chen, Xie Agenda 1. Introduction 2. Problem Definition 3. Basic Solution 4. Efficient Solution 5. Results

12 Cheng, Chen, Chen, Xie Basic solution for a T-k-PNN query (k=3,T=0.1) 3-subsetQP {O 1, O 2, O 3 }0.2 {O 1, O 2, O 4 } 0.1 {O 1, O 3, O 4 } 0.1 {O 2, O 3, O 4 } 0.1 0.05 {O 2, O 3, O 5 } 0.05 {O 1, O 3, O 5 } …… 0.05 {O 1, O 2, O 5 } 0.05 {O 1, O 2, O 5 } 0.1 {O 2, O 3, O 4 } 0.1 {O 1, O 3, O 4 } 0.1 {O 1, O 2, O 4 } 0.2{O 1, O 2, O 3 } QP3-subset O2O2 O3O3 O1O1 O4O4 O5O5 O6O6 q k-bound T=0.1 Exact QP is expensive to compute! Too many k-subsets! Step1: k-bound filteringStep2: QP CalculationStep3: Accept S, if qp(S)≥T SymbolMeaning riri |o i − q| d i (r)pdf of r i (distance pdf) D i (r)cdf of r i (distance cdf)

13 Cheng, Chen, Chen, Xie Qualification Probability

14 Cheng, Chen, Chen, Xie Basic Solution [TKDE04] O2O2 q n1n1n1n1 f O1O1 O3O3 O4O4 d i (r): distance pdf of O i from qd i (r): distance pdf of O i from q D i (r): distance cdf of O i from qD i (r): distance cdf of O i from q r i : distance of O i from qr i : distance of O i from q n i : smallest distance of O i from q (min(r i ))n i : smallest distance of O i from q (min(r i )) f: shortest max distance of all objects from qf: shortest max distance of all objects from q O5O5 O6O6

15 Cheng, Chen, Chen, Xie Agenda 1. Introduction 2. Problem Definition 3. Basic Solution 4. Efficient Solution 5. Results

16 Cheng, Chen, Chen, Xie Efficient Solution Framework (GVR) Lower bound Upper bound 3. 4. Refinement k-subset Generation k-subset Verification And Refinement k-subsets rejected k-subsets accepted k-subsets Candidate Objects 1. k-bound Filtering 2. Probabilistic Candidate Selection k-subsets Generation Verification Refinement

17 Cheng, Chen, Chen, Xie Probabilistic Candidates Selection O2O2 O3O3 O1O1 O4O4 O5O5 O6O6 q k-bound 0.1 0.2 0.5 Cutoff Probability of O i : Pr(r i ≤f k ) S 1 ={O 4, O 5,O 6 } cp(S 1 )=0.5*0.2*0.1 = 0.01 S 2 ={O 4, O 5 } cp(S 2 )=0.5*0.2 = 0.1 Given T=0.2, if cp(S 2 ) < T, then qp(S 1 )<cp(S 1 )<T. S 1 can be pruned.

18 Cheng, Chen, Chen, Xie Probabilistic Candidates Selection 0.5{O 4 } 0.2{O 5 } 0.1{O 6 } 1{O 3 } 1{O 2 } 1{O 1 } CP1-subset 0.2{O 2, O 3, O 5 } 0.2{O 1, O 3, O 5 } 0.1{O 1, O 4, O 5 } 0.5{O 2, O 3, O 4 } 0.1{O 2, O 4, O 5 } 0.1{O 3, O 4, O 5 } 0.5{O 1, O 3, O 4 } 0.2{O 1, O 2, O 5 } 0.5{O 1, O 2, O 4 } 1{O 1, O 2, O 3 } CP3-subset 1{O 2,O 3 } 0.5{O 2,O 4 } 0.2{O 2,O 5 } 0.5{O 3,O 4 } 0.2{O 3,O 5 } 0.2{O 1,O 5 } 0.1{O 4,O 5 } 0.5{O 1,O 4 } 1{O 1,O 3 } 1{O 1,O 2 } CP2-subset T=0.2, k=3

19 Cheng, Chen, Chen, Xie Storage Efficient Compression 1{O 2,O 3 } 0.5{O 2,O 4 } 0.2{O 2,O 5 } 0.5{O 3,O 4 } 0.2{O 3,O 5 } 0.2{O 1,O 5 } 0.5{O 1,O 4 } 1{O 1,O 3 } 1{O 1,O 2 } CP2-subset Subsets are sorted in descending order of their CPs. {O 3,O 5 } {O 2,O 5 } {O 1,O 5 } Size-2 Set Original subsets Compressed subsets Store the common prefix of the subsets And the last element of the subset that has the minimum product of cutoff probability greater than T

20 Cheng, Chen, Chen, Xie Storage Efficient Compression 0.5{O 4 } 0.2{O 5 } 0.1{O 6 } 1{O 3 } 1{O 2 } 1{O 1 } CP1-subset 0.2{O 2, O 3, O 5 } 0.2{O 1, O 3, O 5 } 0.1{O 1, O 4, O 5 } 0.5{O 2, O 3, O 4 } 0.1{O 2, O 4, O 5 } 0.1{O 3, O 4, O 5 } 0.5{O 1, O 3, O 4 } 0.2{O 1, O 2, O 5 } 0.5{O 1, O 2, O 4 } 1{O 1, O 2, O 3 } CP3-subset 1{O 2,O 3 } 0.5{O 2,O 4 } 0.2{O 2,O 5 } 0.5{O 3,O 4 } 0.2{O 3,O 5 } 0.2{O 1,O 5 } 0.1{O 4,O 5 } 0.5{O 1,O 4 } 1{O 1,O 3 } 1{O 1,O 2 } CP2-subset {O 4 } {O 5 } {O 3 } {O 2 } {O 1 } Size-1 Set {O 3,O 5 } {O 2,O 5 } {O 1,O 5 } Size-2 Set Size-3 Set {O 1,O 2,O 5 } {O 1,O 3,O 5 } {O 2,O 3,O 5 } T=0,2, k=3

21 Cheng, Chen, Chen, Xie O3O3 Seeds Pruning O1O1 O2O2 q O4O4 k=3 f1f1 f2f2 f3f3 min(r 4 ) > f 2 > f 1 Seeds: o 1, o 2, o 3 If o 4 belongs to a 3-nn set S, o 1 and o 2 must also belong to S. r 4 > r 2 r 4 > r 1 min(r 4 ) For example, we can prune the set {o 1,o 3,o 4 }, according to the above rule. max(r 1 ) =f 1 max(r 2 ) =f 2 max(r 3 ) =f 3 No CP calculation is needed. Can prune more candidate k-sets

22 Cheng, Chen, Chen, Xie Verifiers: Upper and Lower Bounds (T=0.2) Candidates k-subsets (After PCS) 0 1 S1 S1 1 0 0.19 0.6 0.1 0.5 ? 0.4 0.54 0.14 0.15 0.18 0.03 Verifier Incremental Refinement Classifier 1 1 0 S2 S2 1 S3 S3 0 1

23 Cheng, Chen, Chen, Xie Verification and Refinement PartitionsStair-Case Model Divide the range [min(r 1 ), f k ] into a series of partitions. Extended from the probabilistic verifiers in [ICDE08b] Build a data structure, i.e. stair-case model, to store the distance cdf of each object. Derive the lower and upper bounds of a k-set’s QP based on the stair-case model. Reject (Accept) a k-set once its QP must be lower (larger) than the threshold.

24 Cheng, Chen, Chen, Xie Lower and Upper Bounds Given that

25 Cheng, Chen, Chen, Xie Upper- Lower- Bound Verifiers

26 Cheng, Chen, Chen, Xie Complexity of Verifiers ItemsCost Upper Bound for one ObjO(kM|C|) Lower Bound for one ObjO(kM|C|) Total complexity of verificationO(kM|C||Q|) |Q|=no. of k-subsets generated from PCS |C|=no. of candidates with non-zero prob. M= no. of subregions

27 Cheng, Chen, Chen, Xie Agenda 1. Introduction 2. Problem Definition 3. Basic Solution 4. Efficient Solution 5. Results

28 Cheng, Chen, Chen, Xie Experiment Setup Uncertain Object DB Long Beach (53k) ( http://www.census.gov/geo/www/tiger/ ) Uncertainty pdf Uniform (default) Gaussian (represented by histograms) Threshold (T)0.1 k6

29 Cheng, Chen, Chen, Xie 1. k-bound Filtering

30 Cheng, Chen, Chen, Xie 2. Performance of GVR

31 Cheng, Chen, Chen, Xie 3. k-subset Generation

32 Cheng, Chen, Chen, Xie 3. k-subset Generation

33 Cheng, Chen, Chen, Xie 4. Verification and Refinement

34 Cheng, Chen, Chen, Xie 5. Time Analysis

35 Cheng, Chen, Chen, Xie 6. Gaussian Distribution

36 Cheng, Chen, Chen, Xie Conclusion We proposed an efficient evaluation framework for T-k- PNN query We proposed various techniques: - k-bound to filter away those unqualified objects - PCS to reduce the number of k-subsets - verification/refinement methods to avoid exact calculation Future Work - extend the techniques to other queries

37 Cheng, Chen, Chen, Xie Reference [TDRP98] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao,“Querying the uncertain position of moving objects,” in Temporal Databases: Research and Practice, 1998. [SSDBM99] D.Pfoser and C. Jensen, “Capturing the uncertainty of moving-objects representations,” in Proc. SSDBM, 1999. [VLDB04a] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong, “Model-driven data acquisition in sensor networks,” in Proc. VLDB, 2004. [ICDE06] C. Böhm, A. Pryakhin, and M. Schubert, “The gauss-tree: Efficient object identification in databases of probabilistic feature vectors,” in Proc. ICDE, 2006. [ICDE07a] V. Ljosa and A. K. Singh, “APLA: Indexing arbitrary probability distributions,” in Proc. ICDE, 2007. [SIGMOD03] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic queries over imprecise data,” in Proc. ACM SIGMOD, 2003. [ICDE07b] J. Chen and R. Cheng, “Efficient evaluation of imprecise location-dependent queries,” in Proc. ICDE, 2007. [VLDB06a] M. Mokbel, C. Chow, and W. G. Aref, “The new casper: Query processing for location services without compromising privacy,” in VLDB, 2006. [TKDE92] D. Barbara, H. Garcia-Molina, and D. Porter, “The management of probabilistic data,” TKDE, vol. 4, no. 5, 1992. [VLDB04b] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic databases,” in VLDB, 2004. [VLDB06b] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom, “Trio: A system for data, uncertainty, and lineage,” in VLDB, 2006. [VLDB03] G. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest neighbor queries for continuously moving points with updates,” in Proc. VLDB, 2003. [ICDCS07] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming algorithms for robust, real-time detection of ddos attacks,” in ICDCS, 2007. [AKDDM96] U. Fayyad, G. Piatesky-Shapiro, P. Smyth, and R. Uthurusamy, Advances in Knowledge Discovery and Data Mining. AAAI Press/MIT Press, 1996. [VLDB04c] N. Koudas, B. Ooi, K. Tan, and R. Zhang, “Approximate NN queries on streams with guaranteed error/performance bounds,” in Proc. VLDB, 2004. [VLDB08a] G. Beskales, M. Soliman, and I. Ilyas, “Efficient search for the top-k probable nearest neighbors in uncertain databases,” in VLDB, 2008. [VLDB06c] O. Mar, A. Sarma, A. Halevy, and J. Widom, “ULDBs: databases with uncertainty and lineage,” in VLDB, 2006.

38 Cheng, Chen, Chen, Xie Reference [VLDB07a] L. Antova, C. Koch, and D. Olteanu, “Query language support for incomplete information in the maybms system,” in Prof. VLDB, 2007. [SIGMOD08a] S. Singh et al, “Orion 2.0: Native support for uncertain data,” in Prof. ACM SIGMOD, 2008. [ICDE08a] Singh et al, “Database support for pdf attributes,” in Proc. ICDE, 2008. [TKDE04] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying imprecise data in moving object environments,” IEEE TKDE, vol. 16, no. 9, Sept. 2004. [DASFAA07] H. Kriegel, P. Kunath, and M. Renz, “Probabilistic nearest-neighbor query on uncertain objects,” in DASFAA, 2007. [MUD08] Y. Qi, S. Singh, R. Shah, and S. Prabhakar, “Indexing probabilistic nearest-neighbor threshold queries,” in Proc. Workshop on Management of Uncertain Data, 2008. [TKDE08] X. Lian and L. Chen, “Probabilistic group nearest neighbor queries in uncertain databases,” IEEE Trans. On Knowledge and Data Engineering, vol. 20, no. 6, 2008. [ICDE08b] R. Cheng, J. Chen, M. Mokbel, and C. Chow, “Probabilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain data,” in Proc. ICDE, 2008. [VLDB05] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar, “Indexing multi-dimensional uncertain data with arbitrary probability density functions,” in Proc. VLDB, 2005. [VLDB07b] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain data,” in Proc. VLDB, 2007. [SIGMOD08b] X. Lian and L. Chen, “Monochromatic and bichromatic reverse skyline search over uncertain databases,” in Proc. SIGMOD, 2008. [ICDE07c] M. Soliman, I. Ilyas, and K. Chang, “Top-k query processing in uncertain databases,” in Proc. ICDE, 2007. [SIGMOD08c] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain data: A probabilistic threshold approach,” in Proc. SIGMOD, 2008. [VLDB08b] V. Rastogi, D. Suciu, and E. Welbourne, “Access control over uncertain data,” in Proc. VLDB, 2008. [VLDB08c] C. Koch and D. Olteanu, “Conditioning probabilistic databases,” in Proc. VLDB, 2008. [VLDB08d] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with quality guarantees,” in Proc. VLDB, 2008. [SIGMOD84] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” Proc. of the ACM SIGMOD Int’l. Conf., 1984.

39 Cheng, Chen, Chen, Xie Q & A Thanks!


Download ppt "Cheng, Chen, Chen, Xie Evaluating Probability Threshold k- Nearest-Neighbor Queries over Uncertain Data Reynold Cheng (University of Hong Kong) Lei Chen."

Similar presentations


Ads by Google