Presentation is loading. Please wait.

Presentation is loading. Please wait.

Forming Conducting Polymers Utilising Room Temperature Ionic Liquids PhD student: Lavinia Astratine Supervisors: Dr. Anthony Betts & Prof. John Cassidy.

Similar presentations


Presentation on theme: "Forming Conducting Polymers Utilising Room Temperature Ionic Liquids PhD student: Lavinia Astratine Supervisors: Dr. Anthony Betts & Prof. John Cassidy."— Presentation transcript:

1 Forming Conducting Polymers Utilising Room Temperature Ionic Liquids PhD student: Lavinia Astratine Supervisors: Dr. Anthony Betts & Prof. John Cassidy (DIT) Prof. Edmond Magner (MSSI, Limerick)

2 1. Concept1. Concept 2. Objectives2. Objectives 3. Lab Work3. Lab Work 4.Other polymers: polythiophene4.Other polymers: polythiophene & Ionic Liquids & Ionic Liquids 5.Future work5.Future work

3 1. Concept The aim of this project is to use conducting polymers (CPs), in conjunction with Room Temperature Ionic Liquids (RTILs), to produce electrochromic films. Such films, which change colour in response to electrical potential changes, could be used in electronic display devices and in light and energy- control applications (eg. smart windows which control light transmittance).

4 Production of improved electrochromic devices, using a more environmentally-friendly “Green Chemistry” approach is a desirable goal. Conducting polymers (CPs, such as polypyrrole, polythiophene, polyaniline and/or their derivatives) have been studied extensively. A promising CP for electrochromic applications is polypyrrole (PPy). 2. Objectives

5 Characteristics of polypyrrole: Thin films of polypyrrole are yellow in the undoped insulating state and black in the doped conductive state Electrochemical degradation has been reported in many studies electrode potentialThe electrode potential applied has been found to influence greatly the degradation process (electrode potential limit 0.6 V vs. Ag/AgCl) Polypyrrole is a quite labile electrode material that undergoes a relatively fast electrochemical degradation, at least in aqueous solutions Electrochimica Acta 52 (2007) 4784–4791

6 3. Lab Work Method used: Cyclic Voltammetry a) Form PPy films using organic solvents as Electrolyte Experimental Experimental set up Working Electrode (WE): Pt electrode (diameter 2mm) Counter Electrode (CE): Silver Wire Reference Electrode (RE): saturated Ag/AgCl Pyrrole used for synthesis of PPy films was purified by distillation and kept refrigerated in the dark. Monomer solution: 0.1 M Pyrrole and 0.1 M LiClO 4 and H 2 O Electrolyte solution: 0.1 M LiClO 4 and H 2 O

7 Results and Discussion Results and Discussion → Potential range: -1V to +0.8V → After 3 sweeps a yellow film was deposited on the electrode surface

8 In order to change the polymer colour the electrode was placed in electrolyte solution Potential range: -0.4V to +0.5V CV in electrolyte for 10 cycles The polymer changed colour to blue

9 b) Form PPy on FTO glass (WE), [0.5cmx3cm] Monomer solution (deoxygenated for 10 minutes): 0.1 M Py, 0.1 M LiClO 4, H 2 O Electrolyte solution: 0.1 M LiClO 4, H 2 O Potential range: -0.9 V to 1.5 V Run for 6 sweeps → Results in a black oxidized film, which is unstable → Polypyrrole was overoxidized

10 Observations: PPy is oxidizing at ca. 0.6V. From 0.55V on, the current increases with each potential sweep. No colour change of the polymer was observed on the FTO glass. Probably 1 or 2 scans are enough in the region where the pyrrole starts to be oxidized (0.95 V). The results are better with FTO glass when the monomer solution is degassed before starting polymer formation.

11 4.Other polymers: polythiophene Combines the flexibility, elasticity and malleability of plastics + electrical conductivity + also often exhibit colour (polychromism) as electrochromic materials Green Solvents Ionic Liquids ‘Green Solvents’ Ionic liquids (ILs) are room temperature molten salts, composed mostly of organic ions that can undergo almost unlimited structural variations ILs which function at room temperature, the most desirable operational temperature range, are termed “Room Temperature Ionic Liquids”, RTILs

12 Examples include 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF 6 ) and its borate counterpart (BMIM.BF 4 )

13 WE: Pt electrode CE: Pt coil Monomer Solution: RE: Pt wire Polymerization range: -1 V to +1 V Colours of the film: yellow→orange→red→Black Making polymers in ionic liquids 25cycles 0.1 M Pyrrole & BMIM PF6

14 WE: FTO glass (3cm x 0.5mm) Monomer Solution: CE: Pt coil RE: Pt wire Polymerization range: -1 V to +1 V Colours of the film: yellow→light Brown→Brown→Black 0.1 M Pyrrole & BMIM PF6 16 cycles

15 5. Future work Combine conducting polymers (pyrrole, thiophene) with other RTILs such as [ChCl][EG], [BMIM][CF 3 SO 3 ], [Py][CF 3 SO 3 ] in order to get different colours during electropolymerization on optically transparent FTO and Au-sputtered glass substrates. Conduct spectroelectrochemical studies of the polymer films, in order to detect colour changes in situ Gain insight into the mechanisms of electrochromism Construct simple Proof of Concept Device/Prototype illustrating potential of technology and transfer technology

16 Papers Electrochimica Acta 52 (2007) 4784–4791, A.Brazier et al. Polymer Degradation and Stability 75 (2002) 255–258, R. Mazeikiene, A. Malinauskas Synthetic Metals 157 (2007) 485-491, A. Alumaa et al. Electrochimica Acta, Vol.42,No.2,pp. 203-210, 1997, Yongfang Li Journal of Electroanalytical Chemistry 618 (2008) 87–93, by D. Asil et al. Nature Materials, 8, (2009), 621-629, M. Armand, D.R. MacFarlane, H. Ohno and B. Scrosati Polymer 45(2004) 1447-1453, J.M. Pringle et al.

17 Aknowledgements - Dr. Anthony Betts & Prof. John Cassidy (DIT) - Prof. Edmond Magner (MSSI, Limerick) - Edmond Magner Research Group (MSSI,Limerick) Thank you for your attention!


Download ppt "Forming Conducting Polymers Utilising Room Temperature Ionic Liquids PhD student: Lavinia Astratine Supervisors: Dr. Anthony Betts & Prof. John Cassidy."

Similar presentations


Ads by Google