Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 6: Muscular System

Similar presentations


Presentation on theme: "Chapter 6: Muscular System"— Presentation transcript:

1 Chapter 6: Muscular System
Popeye

2 Functions Essential function of muscle is contraction or shortening.
Movement – muscle contractions lead to movement of skeleton Posture – partial contractions Stabilizing Joints Heat Production – catabolism produces heat, leading to homeostasis of body temperature

3 Types of Muscles Smooth muscle – no striations, involuntary; abdominal organs Cardiac muscle – intercalated disks, striations, involuntary; heart Skeletal muscle – striations, voluntary; biceps, deltoid

4 Muscle Cells (Fibers) Skeletal and smooth muscle cells are elongated
These are called fibers. New terms for cells of muscle fibers: Sarcolemma – cell membrane Sarcoplasm – cytoplasm Sarcoplasmic reticulum – same as ER but contains high levels of calcium

5 Muscle Fibers Each skeletal muscle fiber (cell) is enclosed in a connective tissue layer called endomysium. Several sheathed muscle fibers are then wrapped by a fibrous membrane called a perimysium in bundles called fascicles. Groups of fascicles are bound together and wrapped in connective tissue called epimysium. These muscles are then attached to bones by tendons or aponeuroses.

6 The Man Whose Arms Exploded
Connective tissues gave way because of extreme size Nothing to keep muscle fibers bundled

7 Make-up of Fibers Myofibrils – fine fibers packed close together
Alternating light (I) and dark (A) bands along the length of myofibril give striated appearance. Tiny contractile units of muscle fiber called sarcomeres. Myofilaments – structural units within sarcomere 2 types of myofilaments Actin – thin protein Myosin – thick protein

8 The Sarcomere

9 Parts of the Sarcomere Z-Disc: separates each sarcomere
H-zone - space between each actin molecule A-band – region of myosin (thick) I-band – only actin (thin) M-line – holds thick filaments together Cross-bridges – “arms” on myosin that attach to binding sites on actin

10 Skeletal Muscle Activity
To contract, skeletal muscle cells are stimulated by nerve impulses sent by brain. One neuron + muscle cells it stimulates = motor unit. Impulse travels along nerve on long extensions of neuron are called axons. When they reach muscle they branch into axon terminals which join with sarcolemma.

11 Skeletal Muscle Activity
These junctions are called neuromuscular junctions. The nerve endings and muscle never touch – this gap is called the synaptic cleft. When nerve impulse reaches axon terminal, a neurotransmitter is released from neuron. This neurotransmitter is called acetylcholine, or ACh.

12 Skeletal Muscle Activity
ACh diffuses across synaptic cleft and attaches to receptors on muscle cell. Sacrolemma becomes temporarily more permeable to Na+ ions than to K+ ions (Na+ in / K+ out). This gives cell interior an excess of positive ions and changes electrical conditions of cell. Creates electrical current called an action potential (AP). Electrical impulse travels across muscle cell, leading to contraction of the cell. Cell returned to resting state by sodium-potassium pump Acetylcholinesterase (AChE), an enzyme, breaks down Acetylcholine to prevent repeated stimulation (one impulse = one contraction)

13 Neuromuscular Junction

14 Neuromuscular Junction
Action potential travels down Transverse Tubules (T Tubules) AP reaches SR, Ca2+ ions are released into sarcoplasm In a relaxed cell, a protein, tropomyosin, covers the binding site of myosin. Ca2+ binds to troponin, causing tropomyosin to shift, allowing myosin to bind to actin Ca2+ ions trigger binding of myosin to actin to initiate filament sliding.

15 Mechanism of Muscle Contraction
When activated, myosin heads attach to binding sites on thin filaments and sliding begins. Each cross-bridge attaches and detaches creating tension that pulls the thin filaments towards the center of sarcomere This leads to cell shortening, or contractions. A) Relaxed sarcomere B) Fully contracted H Zone disappeared Z discs closer I bands nearly gone

16 Sodium Potassium Pump - Frogs

17 Sliding Filament Theory

18 Sliding Filament Theory

19 Contractions “All or None” Muscle Law – a muscle cell will contract to its fullest extent; never partially However, entire muscle has graded response Frequency of nerve impulses Number of muscle cells stimulated at once Rigor mortis – Muscle fibers run out of ATP and SR cannot pump Ca2+ ions out of sarcoplasm. Cross bridges cannot detach and skeletal muscles become locked in contraction Lasts until lysosomes can break down muscle fibers (15-25 hours later)

20 Types of Contractions Muscle twitches – single, brief, jerky contractions caused by single impulse Complete tetanus – smooth, sustained contraction Isotonic contraction – muscle shortens, tension remains same; leads to movement Isometric contraction – muscle remains the same, and tension increases; no movement

21 Fast and Slow Muscles Speed of contraction is related to muscle’s specific function Red (Type I)muscle is slow twitch, can generate ATP quickly and contract for long periods of time Red muscles have many mitochondria for ATP Endurance

22 Fast and Slow Muscles White (Type IIb) muscles are fast twitch, can not make ATP quickly, and fatigue relatively rapidly White muscles have few mitochondria Strength

23 Naming Muscles Action performed Direction of fibers Location
Number of divisions Shape Point of attachement Pronator teres Transverse abdominis External oblique Bicep Deltoid Sternocleidomastoid


Download ppt "Chapter 6: Muscular System"

Similar presentations


Ads by Google