Presentation is loading. Please wait.

Presentation is loading. Please wait.

Christian Pagé, CERFACS

Similar presentations


Presentation on theme: "Christian Pagé, CERFACS"— Presentation transcript:

1 Christian Pagé, CERFACS
Impact of climate change on France watersheds in 2050 : A comparison of dynamical and multivariate statistical methodologies By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France Ouranos, 20 May 2008

2 Outline Uncertainties Comparisons against Quantile-Quantile
Problematic of Downscaling Why use a statistical approach? Methodology Statistical Downscaling & Weather Types Principles & Hypothesis Validation (also Hydrology) Application Impact of climate change on France watersheds Uncertainties Comparisons against Quantile-Quantile Summary & Future Ouranos, 20 May 2008 2

3 Climate model Precipitations (mm/day) Downscaling Impact model
Perturbed climate meteorological fields ~ 250 km Climate model Precipitations (mm/day) Problematic: Generalities How can we evaluate impacts of climate change? Meteorological forcings <10km Impact model Precipitations (mm/day) Downscaling Ouranos, 20 May 2008 3

4 Better representation physical processes Much less CPU!
Problematic: Generalities Downscaling Two main methodologies Better representation physical processes Statistical relationship: Local fields & Large-scale forcings Resolve dynamics and physics: Numerical model Much less CPU! Statistical downscaling Dynamical downscaling Talk about pros and cons: Statistical: much less CPU; Dynamical: better physical processes representation Can be used separately or in combination Ouranos, 20 May 2008 4

5 Statistical Downscaling Dynamical Downscaling
Downscaling Methodologies GHG, Aerosols Statistical Downscaling Dynamical Downscaling MCGOA CNRM-CM3 Boundary Conditions (also Oceanic) Predictors Predictors Regional Model ARPEGE-VR F: Calibration Validation OBS. Raw Forcings Bias correction Spatialisation OBS. Quelles sont les techniques de spatialisation? Local Forcing variables Impact Model: ISBA-MODCOU 5

6 Regional Climate Model
Weather Type: southerly winds Arrows: 850 hPa Wind Lines: MSLP anomalies Dynamical downscaling Precipitation anomalies (%) Global Climate Model 280 km Observations 8 km 60 km Regional Climate Model 6

7 Several Methodologies (Déqué, 2007) ► Perturbation ► Quantile-Quantile
Dynamical downscaling 1) Climate Change Bias Correction Several Methodologies (Déqué, 2007) ► Perturbation ► Quantile-Quantile Δ Obs. Scenario Probability Density Functions Ouranos, 20 May 2008 7

8 Several Methodologies (Déqué, 2007) ► Perturbation ► Quantile-Quantile
Dynamical downscaling 2) Bias Correction Several Methodologies (Déqué, 2007) ► Perturbation ► Quantile-Quantile Model Present Model Future OBS. Probability Density Functions Ouranos, 20 May 2008 8 8

9 Several Methodologies (Déqué, 2007) ► Perturbation ► Quantile-Quantile
Dynamical downscaling 3) Bias Correction Several Methodologies (Déqué, 2007) ► Perturbation ► Quantile-Quantile Corrected Model Present Corrected Model Future Probability Density Functions Ouranos, 20 May 2008 9 9

10 Statistical downscaling: General methodology
Global Scale Climate Variable L (predictors) MSLP, geopotential, upper-level wind Local Geographical Characteristics topography, land-use, turbulence Local Scale Climate Variable R 10m wind, precipitation, temperature R = F (L, β) What is beta? Local geo charac are included implicitely I assume? β such that║R – F(L, β)║ ~ Min F based on Weather Typing Ouranos, 20 May 2008 10

11 Statistical downscaling: Current methodology
Based on: NCEP re-analyses Weather typing Mean Sea-Level Pressure Météo-France Mesoscale Meteorological Analysis (SAFRAN) France Coverage 8 km spatial resolution from coherent climatic zones 7 parameters Precipitation (liquid and solid) Temperature Wind Module Infra-Red and Visible Radiation Specific Humidity SAFRAN 8-km resolution orography Ouranos, 20 May 2008 11

12 For a given day j in which we know the Large-Scale Circulation
Statistical downscaling: Current methodology For a given day j in which we know the Large-Scale Circulation Find closest weather type (daily data) Euclidian distance over first ten principal components Select all Ri days of this type MSLP and Temperature index Reconstruct precipitation index: using regression of learning period and MSLP of climate model Temperature index: mean of T over whole France Regression is over 220 points, with 40 km radius of SAFRAN precip. Learning data for regression is MSLP of NCEP-REA & SAFRAN precip averaged over 220 pts Boe J., L. Terray, F. Habets and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling J. Geophys. Res., 111, D23106. Ouranos, 20 May 2008 12

13 Look for analogs (15 days) among all Ri days
Statistical downscaling: Current methodology Look for analogs (15 days) among all Ri days Closest in terms of precipitation and temperature index Belonging to the same decile Randomly choose one day Use SAFRAN data for the chosen day Apply temperature correction if Tindex - TNCEP > 2 C Correct precipitation (solid/liquid) and IR radiation Applicable if having long enough observed data time series How do you explain synthetically the indexes? Ouranos, 20 May 2008 13 13

14 Is Climate Model simulating correctly Weather Types ? YES
Statistical downscaling: Validation Is Climate Model simulating correctly Weather Types ? YES Precipitation mm/day Period: Downscaling: MSLP ARPEGE A1B Scenario Regional Simulation SST from CNRM-CM3 model Safran Downscaling DJF 0.6 0.6 7 7 What is TSO? This downscaling is using MSLP, but also precip+temp indexes I assume. It is not independent? JJA 0.5 5 0.5 5 14

15 Strong link with regional climate Simulated correctly by model
Statistical downscaling: Validation: Hypothesis 3 Main Hypothesis Predictors Strong link with regional climate Simulated correctly by model Statistical relationship F still valid for perturbed climate. Cannot be validated or invalidated formally. Also true for physical parameterisations and bias correction. Predictors encompass completely the climate change signal. Ouranos, 20 May 2008 15

16 Precipitation: 8 weather types
Hypothesis 1: predictors has strong link with regional climate Precipitation: 8 weather types Example for 2 winter type WT1 WT2 MSLP Anomaly NDJFM MSLP Anomaly NDJFM -16 +16 +16 -16 Data courtesy of Météo-France Variable de circulation de grande échelle: Pression (MSLP), provenant du projet EMULATE ( , journalier, 5°x5°), précipitations SQR (Météo-France) Which period is shown here? What is EMULATE? Ratio Pr(reg)/ Pr(moy) Ratio Pr(reg)/ Pr(moy) +3.5 +3.5

17 Hypothesis 1: predictors simulated correctly by model
Winter types : WT5 (MSLP, composite anomaly in hPa) Spatial correlation > 0.96 for all weather types NCEP Reanalyses ARPEGE GCM-VR Highlighted box is showing correlation between NCEP and ARPEGE-VR for each WT separately?

18 Perfect Model Validation
Hypothesis 2 & 3: Predictors encompass completely climate change signal Statistical relationship still valid for perturbed climate SPRING Perfect Model Validation Precipitation mean over France Precipitation mm/day Reconstructed Precipitation amount change in % of current mean (2100_2050) – (2000_1970) A1B Scenario, Spring What is difference between bottom pictures? What is learning period? Black curve=model, blue curve=downscaling? What represent size of circles? -0.35 +0.35 18

19 Precipitation Tendencies ΣPr 1951-2000 Observations vs Reconstruction
Statistical downscaling: Validation Tendencies ΣPr Observations vs Reconstruction Color: station latitude South North Changes of weather type occurrence ► Precipitation Tendencies spatial structures (r=0.92) Precipitation What are units mm/dec ?? mm per decade Precision again on northeastern stations (correlation not as good) Because not totally explained by weather typing, but was improved because we use also the distance to the weather types. 19

20 RATIO Temperature Tendencies [Reconstructed] / [Observed]
Statistical downscaling: Validation Temperature RATIO Temperature Tendencies [Reconstructed] / [Observed] Period Data courtesy of Météo-France Weather Type Occurrence changes cannot explain observed temperature tendencies ► Mandatory to take into account temperature as a predictor Ouranos, 20 May 2008 20

21 Statistical downscaling: Validation: Hydrology
Flow Validation 150 800 1200 ARIEGE (Foix) LOIRE(Blois) SEINE (Poses) Annual Cycle OBS NCEP ARPEGE-VR Jan to Dec Jan to Dec Jan to Dec 2500 250 LOIRE (Blois) 2500 SEINE (Poses) ARIEGE (Foix) CDF OBS NCEP ARPEGE-VR 0 to 1 0 to 1 0 to 1 Cumulative Density Function NCEP is downscaled using statistical downscaling, ARPEGE-VR also Bottom: only obs + downscaled NCEP + SAFRAN obs because we are not showing a mean but a time series. VIENNE (Ingrandes 500 Winter Mean OBS NCEP (0.85) SAFRAN (0.97) 1960 2010

22 Strong link with regional climate Simulated correctly by model
Statistical downscaling: Validation: Summary Predictors Strong link with regional climate Simulated correctly by model Predictors encompass completely the climate change signal Need to use Temperature as a predictor Watersheds flows are correctly reproduced Annual Cycle Annual Variability Cumulative Density Function Ouranos, 20 May 2008 22

23 Quantifying Uncertainties
Application: Impact of climate change on France watersheds Black-circled: at least 85% models has sign agreement Multi-Model relative change of watershed Flows (%), 2046/2065 Dispersion: Spatial Mean σ = 18% Quantifying Uncertainties WINTER: DJF The Simulated is direct model output or with a perturbation or quantile-quantile method? Multi-Model relative change of Downscaled Precip. (%), 2046/2065 Ouranos, 20 May 2008 23

24 Application: Impact of climate change on France watersheds
Relative change precipitation 2046/2065 vs 1970/1999 in Winter -0.6 +0.6 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 24 24

25 Statistical downscaling Quantile-Quantile downscaling
Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Winter -0.5 +0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 25 25

26 Summary - 1 Statistical downscaling methodology
Validation is very good Hypothesis of stationarity (regression) Weather Typing Approach Low CPU demand Evaluate uncertainties with many scenarios Uncertainties of downscaling method are limited Those of numerical models are, in general, greater Ouranos, 20 May 2008 26 26

27 Summary - 2 Ensemble Mean of Watershed flows
Decreases moderately in Winter (except Alps and SE Coast) 2050 : important decrease in Summer & Autumn Robust results, low uncertainty Strong increase of Low Water days Heavy flows decrease much less than overall mean Ouranos, 20 May 2008 27 27

28 Down the Road… Whole Code Re-Engineering Modular approach
Implement several statistical methodologies Configurable End-user parameters Core parameters Web Portal Climate-Change Spaghetti to Climate-Change Distribution Probability Density Function Re-sampled Ensemble Realisations M. Dettinger, U.S. Geological Survey (2004) Ouranos, 20 May 2008 28 28

29 Christian Pagé, CERFACS
Merci de votre attention!  Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France Ouranos, 20 May 2008 29

30 Future Present Application: France watersheds: Snow Cover
5 30 Future Present Aug Jul Aug Jul 250 500 Aug Jul Aug Jul Water Equivalent (mm) of Snow Cover Pyrenees 2055 Grayed zones: min/max 30 30

31 + + - Application: France watersheds: Uncertainties Correlation
Atlantic Ridge Blocking + ~0 20 days NAO+ NAO- + - -20 days Models Correlation Weather Type Occurrence Precipitation -0.5 +0.5 31 31

32 Application: Impact of climate change on France watersheds
Relative change watershed flows 2046/2065 vs 1970/1999 Perturbation method Winter Corr 0.92 Spring Corr 0.38 -0.5 +0.5 Summer Corr 0.86 Autumn Corr 0.72 32 32

33 Application: Impact of climate change on France watersheds
Relative change precipitation 2046/2065 vs 1970/1999 in Summer -0.6 +0.6 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 33 33

34 Statistical downscaling Quantile-Quantile downscaling
Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Summer -0.5 +0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling Ouranos, 20 May 2008 34 34

35 Domaine classification MSLP (D1)
Régimes de temps et hydrologie (H1) Définition de régimes/types de temps discriminants pour les précipitations en France Variable de circulation de grande échelle: Pression (MSLP), provenant du projet EMULATE ( , journalier, 5°x5°), précipitations SQR (Météo- France) Classification multi-variée Précipitations & MSLP, pas de temps journalier, espace EOF. On conserve ensuite uniquement la partie MSLP pour définir les types de temps. Domaine classification MSLP (D1) * 310 stations pour les précipitations Important: régimes discriminants, classification conjointe de la variable grande échelle avec la variable d’impact, échelle journalière, on peut représenter la variété des régimes de pluie avec 8 à 10 régimes. 8 à 10 régimes de temps !


Download ppt "Christian Pagé, CERFACS"

Similar presentations


Ads by Google