Download presentation
Presentation is loading. Please wait.
Published byDominique Cann Modified over 9 years ago
1
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk Advantages and Disadvantages of Sparse Aperture Arrays Fermilab: October 2009
2
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Introduce some of the concepts of mid-frequency, sparse aperture arrays Show that 2-PAD is the perfect test-bed for experimentally investigating these concepts Aperture Array Review Sparse Aperture Array Concepts Effective Area High-Gain Antenna Strategy Instantaneous Field of View Sky Coverage Dynamic Range Computational Complexity 2-PAD Sparse Configuration Motivation and Contents Fermilab: October 2009
3
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Aperture Arrays Fermilab: October 2009
4
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk beamformer Aperture Arrays Fermilab: October 2009 -2 0+1+200 000 +1 0-2
5
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk d Dense: d ≤ λ/√2, Sparse: d > λ/√2 Sparse Aperture Arrays Fermilab: October 2009
6
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Dense: A eff = λ c 2 /2, Sparse: A eff = λ 2 /2 Critical frequency f c sparse limit Effective Area per Element [SKA Memo 100] dense up to f c = 700MHz dense up to f c = 1000MHz fcfc fcfc f c = 300MHz Effective Area Fermilab: October 2009
7
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk “The total cost of aperture array is strongly correlated with number of receiver chains” If each antenna element has more forward gain, you can use less antennas while still maintaining comparable effective area, but make drastic cost savings due to the reduction in receiver chains S = A eff /T sys SS FoM = (A eff /T sys ) 2 ∙ FoV Therefore maintain target SKA sensitivity and survey speed while decreasing cost [SKA Memo 100] High-Gain Antenna Strategy Fermilab: October 2009
8
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk Instantaneous Field of View Fully Digital Dense A. Array 120deg 10,000deg 2 18deg 250deg 2 Hybrid Dense A. Array 120deg 10,000deg 2 28deg 625deg 2 18deg 250deg 2 60m Dish + Phased Array Feed 120deg+ 10,000deg 2 + 18deg 250deg 2 Sparse High Gain A. Array 36deg 1,000deg 2 18deg 250deg 2 Fermilab: October 2009
9
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Earth rotation gives full coverage in RA Trick: 3-way 36° switching mechanism to get a 108° of declination Karoo SKA site (SA) 30.5°S Murchison SKA site (WA) 26.5°S Overall Sky Coverage Fermilab: October 2009
10
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk Which key science projects require pointing in opposite parts of the sky? 1 – The Dark Ages 2 – G. Evolution, Cosmology & Dark Energy 3 – Cosmic Magnetism 4 – GR using Pulsars & Black Holes Search 4a – Gravitational Waves 4b – BH Spin 4c – Theories of Gravity 5 – Cradle of Life 5a – Proto-planetary Disks 5b – Prebiotic Molecules 5c – SETI 6 – Exploration of the Unknown Sascha Schediwy: sws@astro.ox.ac.ukhttp://2-pad.physics.ox.ac.uk Instantaneous Sky Coverage Fermilab: October 2009
11
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk Dynamic Range Station beam pattern Antenna Element Separation Station Beam Pattern Antenna separation: dense (f < 1)nominal (f = 1)sparse (f > 1)random (f > 1) [SKA Memo 87] Beam Power Fermilab: October 2009
12
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk For a constant processed FoV, the digital processing complexity increases as the square of the sparseness factor [SKA Memo 87] Computational Complexity Fermilab: October 2009 www.oerc.ox.ac.uk/research/oskar
13
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk OSKAR Simulator Fermilab: October 2009
14
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Dual-Polarisation All Digital Aperture Array Dual Polarisation plug and play antennas 4x4 antenna array Various interchangeable antennas 300-1000MHz RF range Digital backend processing Multi-FPGA boards, Multi-ASIC boards 200MHz processed bandwidth Multiple independent beams No. of Beam vs. Bandwidth trade-off Demonstrate upgrade path to the AAVP 2-PAD Aperture Array Fermilab: October 2009
15
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk 2-PAD Aperture Array Fermilab: October 2009
16
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Log-periodic dipole array (LPDA) antenna Frequency range = 300-1000+ MHz 2-PAD High Gain Antenna Fermilab: October 2009
17
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Beam-width = 34.5° (Field of View = 928deg 2 ) Gain = 13.2dBi (20.9x isotropic) 2-PAD High Gain Antenna Fermilab: October 2009
18
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk ROACH Correlator Fermilab: October 2009
19
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Jodrell Bank RFI Winterhill (500kW) Moel-y-Parc (100kW) The Wrekin (100kW) Sutton Coldfield (1000kW) Emley Moor (870kW) Fermilab: October 2009
20
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Jodrell Bank RFI Fermilab: October 2009
21
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk http://2-pad.physics.ox.ac.uk Future Deployment Fermilab: October 2009
22
Dual Polarisation All Digital Aperture Array
23
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Antenna (ANT) & Balun (BAL) BECA ORA FlowPADLPDA LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
24
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Low Noise Amplifiers (LNA) LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
25
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Filter Module (FIL) LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
26
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Gain Chain Module (GCM) LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
27
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – sws@astro.ox.ac.uk Category-7 Cable (CAT) LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
28
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Splitter Balun (SPL) LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
29
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Signal Conditioning Module LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
30
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Translator Board (TLB) LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
31
http://2-pad.physics.ox.ac.ukSascha Schediwy: sws@astro.ox.ac.uk2-pad.physics.ox.ac.ukSascha Schediwy – Danny Price Coaxial Cables SRC CXA CXBCXC LNASRCFILCXA GCM ANT CATSPL CXBCXC BAL SCMMIDTLB
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.