Presentation is loading. Please wait.

Presentation is loading. Please wait.

A guide for A level students KNOCKHARDY PUBLISHING

Similar presentations


Presentation on theme: "A guide for A level students KNOCKHARDY PUBLISHING"— Presentation transcript:

1 A guide for A level students KNOCKHARDY PUBLISHING
ROUTES TO PHENOL A guide for A level students KNOCKHARDY PUBLISHING

2 KNOCKHARDY PUBLISHING
PHENOL INTRODUCTION This Powerpoint show is one of several produced to help students understand selected topics at AS and A2 level Chemistry. It is based on the requirements of the AQA and OCR specifications but is suitable for other examination boards. Individual students may use the material at home for revision purposes or it may be used for classroom teaching if an interactive white board is available. Accompanying notes on this, and the full range of AS and A2 topics, are available from the KNOCKHARDY SCIENCE WEBSITE at... Navigation is achieved by... either clicking on the grey arrows at the foot of each page or using the left and right arrow keys on the keyboard

3 PHENOL CONTENTS Prior knowledge Synthesis from benzene
Reactions of the OH group Reactions of the ring Benzene diazonium chloride - preparation Benzene diazonium chloride - reactions Revision check

4 Before you start it would be helpful to…
PHENOL Before you start it would be helpful to… know the functional groups found in organic chemistry know the arrangement of bonds around atoms recall and explain electrophilic substitution of aromatic rings

5 PHENOL Structure phenol is an aromatic alcohol with formula C6H5OH
the OH group is attached directly to the benzene ring it is an almost colourless crystalline solid

6 PHENOL Structure phenol is an aromatic alcohol with formula C6H5OH
the OH group is attached directly to the benzene ring it is an almost colourless crystalline solid Preparation You cannot put an OH group directly onto a benzene ring by electrophilic substitution, so phenol has to be synthesised in a multi-stage process

7 PHENOL 1 Structure phenol is an aromatic alcohol with formula C6H5OH
the OH group is attached directly to the benzene ring it is an almost colourless crystalline solid Preparation You cannot put an OH group directly onto a benzene ring by electrophilic substitution, so phenol has to be synthesised in a multi-stage process 1 Step 1 - Nitration of benzene reagents conc. nitric acid and conc. sulphuric acid (catalyst) conditions reflux at 55°C equation C6H HNO ——> C6H5NO H2O mechanism electrophilic substitution

8 PHENOL 2 Structure phenol is an aromatic alcohol with formula C6H5OH
the OH group is attached directly to the benzene ring it is an almost colourless crystalline solid Preparation You cannot put an OH group directly onto a benzene ring by electrophilic substitution, so phenol has to be synthesised in a multi-stage process 2 Step 2 - Reduction of nitrobenzene reagents tin and conc. hydrochloric acid conditions reflux equation C6H5NO [H] ——> C6H5NH H2O mechanism reduction

9 PHENOL 3 Structure phenol is an aromatic alcohol with formula C6H5OH
the OH group is attached directly to the benzene ring it is an almost colourless crystalline solid Preparation You cannot put an OH group directly onto a benzene ring by electrophilic substitution, so phenol has to be synthesised in a multi-stage process 3 Step 3 - Diazotisation of phenylamine reagents nitrous acid and hydrochloric acid (use sodium nitrite) conditions keep below 10°C equation C6H5NH HNO HCl ——> C6H5N2+ Cl¯ + 2H2O reaction type diazotisation

10 PHENOL 4 Structure phenol is an aromatic alcohol with formula C6H5OH
the OH group is attached directly to the benzene ring it is an almost colourless crystalline solid Preparation You cannot put an OH group directly onto a benzene ring by electrophilic substitution, so phenol has to be synthesised in a multi-stage process 4 Step 4 - Substitution of diazo group by OH reagents water conditions warm above 10°C equation C6H5N2+ Cl¯ H2O ——> C6H5OH N HCl reaction type hydrolysis / substitution

11 PHENOL - REACTIONS OF THE OH GROUP
Water phenol is a weak acid it dissolves very slightly in water to form a weak acidic solution it is a stronger acid than aliphatic alcohols the ring helps weaken the O-H bond and stabilises the resulting anion C6H5OH(aq) C6H5O¯(aq) H+(aq)

12 PHENOL - REACTIONS OF THE OH GROUP
Water phenol is a weak acid it dissolves very slightly in water to form a weak acidic solution it is a stronger acid than aliphatic alcohols the ring helps weaken the O-H bond and stabilises the resulting anion C6H5OH(aq) C6H5O¯(aq) H+(aq) NaOH phenol reacts with sodium hydroxide to form a salt - sodium phenoxide it is ionic and water soluble C6H5OH(aq) + NaOH(aq) ——> C6H5O¯ Na+(aq) + H2O(l)

13 PHENOL - REACTIONS OF THE OH GROUP
Water phenol is a weak acid it dissolves very slightly in water to form a weak acidic solution it is a stronger acid than aliphatic alcohols the ring helps weaken the O-H bond and stabilises the resulting anion C6H5OH(aq) C6H5O¯(aq) H+(aq) NaOH phenol reacts with sodium hydroxide to form a salt - sodium phenoxide it is ionic and water soluble C6H5OH(aq) + NaOH(aq) ——> C6H5O¯ Na+(aq) + H2O(l) Sodium phenol reacts with sodium to form an ionic salt - sodium phenoxide hydrogen is also produced this reaction is similar to that with aliphatic alcohols such as ethanol 2C6H5OH(s) Na(s) ——> 2C6H5O¯ Na+(s) H2(g)

14 PHENOL - REACTIONS OF THE AROMATIC RING ELECTROPHILIC SUBSTITUTION
Bromine the OH group is electron releasing it increases the electron density of the delocalised system it makes substitution much easier compared to benzene the electron density is greatest at the 2,4 and 6 positions substitution takes place at the 2,4 and 6 positions phenol reacts readily with bromine water WITHOUT A CATALYST it is so easy that multiple substitution takes place other electrophiles such as NO2+ react in a similar way

15 BENZENE DIAZONIUM CHLORIDE
Structure has the formula C6H5N2+ Cl¯ a diazonium group is attached to the ring the aromatic ring helps stabilise the ion PREPARATION reagents phenylamine, nitrous acid and hydrochloric acid conditions keep below 10°C equation C6H5NH HNO HCl ——> C6H5N2+ Cl¯ H2O notes nitrous acid is unstable and is made in situ from sodium nitrite C6H5NH2 + NaNO HCl ——> C6H5N2+ Cl¯ + NaCl H2O the solution is kept cold to slow down decomposition of the diazonium salt C6H5N2+ Cl¯ H2O ——> C6H5OH HCl N2

16 DIAZONIUM SALTS - REACTIONS
Benzene diazonium chloride undergoes two main types of reaction SUBSTITUTION OF THE DIAZONIUM GROUP nitrogen expelled COUPLING REACTIONS nitrogen atoms are retained

17 DIAZONIUM SALTS - SUBSTITUTION
OH reagents water (hydrolysis) conditions warm above 10°C equation C6H5N2+ Cl¯ H2O ——> C6H5OH HCl N2 use the only reasonably simple way to substitute OH phenol is an antiseptic and is used to make polymers I reagents potassium iodide solution conditions warm equation C6H5N2+ Cl¯ KI ——> C6H5I KCl N2

18 DIAZONIUM SALTS - COUPLING
reagents phenol and sodium hydroxide conditions alkaline solution below 10°C equation (4-hydroxyphenol)azobenzene YELLOW use making dyes

19 What should you be able to do?
REVISION CHECK What should you be able to do? Recall the structures of phenol and benzene diazonium chloride Explain and understand the difference in reactivity between phenol and benzene Recall the reagents and conditions used in the steps to convert benzene into phenol Recall the different types of reaction undergone by benzene diazonium chloride CAN YOU DO ALL OF THESE? YES NO

20 You need to go over the relevant topic(s) again
Click on the button to return to the menu

21 Try some past paper questions
WELL DONE! Try some past paper questions

22 © 2004 JONATHAN HOPTON & KNOCKHARDY PUBLISHING
ROUTES TO PHENOL THE END © JONATHAN HOPTON & KNOCKHARDY PUBLISHING

23 AMIDES - CHEMICAL PROPERTIES


Download ppt "A guide for A level students KNOCKHARDY PUBLISHING"

Similar presentations


Ads by Google