Download presentation
1
Chapter 3 Limits and the Derivative
Section 2 Infinite Limits and Limits at Infinity (Part 1)
2
Objectives for Section 3.2 Infinite Limits and Limits at Infinity
The student will understand the concept of infinite limits. The student will be able to calculate limits at infinity. Barnett/Ziegler/Byleen Business Calculus 12e
3
Example 1 Recall from the first lesson: lim 𝑥→ 0 − 1 𝑥 =
𝐷𝑁𝐸 −∞ ∞ Barnett/Ziegler/Byleen Business Calculus 12e
4
Infinite Limits and Vertical Asymptotes
Definition: If the graph of y = f (x) has a vertical asymptote of x = a, then as x approaches a from the left or right, then f(x) approaches either or -. Vertical asymptotes (and holes) are called points of discontinuity. Barnett/Ziegler/Byleen Business Calculus 12e
5
Example 2 Let Identify all holes and asymptotes and find the left and right hand limits as x approaches the vertical asymptotes. 𝑓 𝑥 = (𝑥+2)(𝑥−1) (𝑥+1)(𝑥−1) = 𝑥+2 𝑥+1 𝐻𝑜𝑙𝑒:(1, 1.5) 𝑉𝐴:𝑥=−1 𝐻𝐴:𝑦=1 Barnett/Ziegler/Byleen Business Calculus 12e
6
Example 2 (continued) Vertical Asymptote Hole Horizontal Asymptote
lim 𝑥→ −1 − 𝑥+2 𝑥+1 = lim 𝑥→ − 𝑥+2 𝑥+1 = lim 𝑥→−1 𝑥+2 𝑥+1 = −∞ ∞ 𝐷𝑁𝐸 Barnett/Ziegler/Byleen Business Calculus 12e
7
Example 3 𝑓 𝑥 = 1 (𝑥−2) 2 Let Identify all holes and asymptotes and find the left and right hand limits as x approaches the vertical asymptotes. 𝑓 x = 1 (𝑥−2) 2 𝑁𝑜 𝐻𝑜𝑙𝑒𝑠 𝑉𝐴:𝑥=2 𝐻𝐴:𝑦=0 Barnett/Ziegler/Byleen Business Calculus 12e
8
Example 3 (continued) lim 𝑥→ 2 − 1 (𝑥−2) 2 = lim 𝑥→ 2 + 1 (𝑥−2) 2 =
∞ ∞ ∞ Barnett/Ziegler/Byleen Business Calculus 12e
9
Limits at Infinity We will now study limits as x ±.
This is the same concept as the end behavior of a graph. Barnett/Ziegler/Byleen Business Calculus 12e
10
End Behavior Review Even degree Negative leading coefficient
Odd degree Positive leading coefficient Odd degree Negative leading coefficient Even degree Positive leading coefficient Barnett/Ziegler/Byleen Business Calculus 12e
11
Polynomial Functions Ex 4: Evaluate each limit. lim 𝑥→−∞ 𝑥 2 = ∞
Barnett/Ziegler/Byleen Business Calculus 12e
12
Rational Functions If a rational function has a horizontal asymptote, then it determines the end behavior of the graph. If f(x) is a rational function, then lim 𝑥→±∞ 𝑓 𝑥 =ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 Barnett/Ziegler/Byleen Business Calculus 12e
13
Because the degree of the numerator < degree of the denominator.
Rational Functions Ex 5: Evaluate lim 𝑥→±∞ 𝑓 𝑥 𝑓 𝑥 = 5 𝑥+2 Because the degree of the numerator < degree of the denominator. 𝐻𝐴:𝑦=0 lim 𝑥→∞ 𝑓 𝑥 = lim 𝑥→−∞ 𝑓 𝑥 = Barnett/Ziegler/Byleen Business Calculus 12e
14
Because the degree of the numerator = degree of the denominator.
Rational Functions Ex 6: Evaluate lim 𝑥→±∞ 𝑓 𝑥 𝐻𝐴:𝑦= 3 2 Because the degree of the numerator = degree of the denominator. 3 2 lim 𝑥→∞ 𝑓 𝑥 = 3 2 lim 𝑥→−∞ 𝑓 𝑥 = Barnett/Ziegler/Byleen Business Calculus 12e
15
Rational Functions If a rational function doesn’t have a horizontal asymptote, then to determine its end behavior, take the limit of the ratio of the leading terms of the top and bottom. Barnett/Ziegler/Byleen Business Calculus 12e
16
Because the degree of the numerator > degree of the denominator.
Rational Functions Ex 7: Evaluate lim 𝑥→±∞ 𝑓 𝑥 𝑓 𝑥 = 2 𝑥 5 − 𝑥 3 −1 6 𝑥 3 +2 𝑥 2 −7 Because the degree of the numerator > degree of the denominator. 𝐻𝐴:𝑁𝑜𝑛𝑒 lim 𝑥→∞ 2 𝑥 5 6 𝑥 3 = lim 𝑥→∞ 𝑥 2 3 = ∞ lim 𝑥→−∞ 2 𝑥 5 6 𝑥 3 = lim 𝑥→−∞ 𝑥 2 3 = ∞ Barnett/Ziegler/Byleen Business Calculus 12e
17
Rational Functions Ex 8: Evalaute lim 𝑥→±∞ 𝑓 𝑥
𝑓 𝑥 = 5 𝑥 6 +3𝑥 2 𝑥 5 −𝑥−5 𝐻𝐴:𝑁𝑜𝑛𝑒 lim 𝑥→∞ 5 𝑥 6 2 𝑥 5 = lim 𝑥→∞ 5𝑥 2 = ∞ lim 𝑥→−∞ 5 𝑥 6 2 𝑥 5 = lim 𝑥→−∞ 5𝑥 2 = −∞ Barnett/Ziegler/Byleen Business Calculus 12e
18
Homework #3-2A: Pg 150 (3-15 mult. of 3, 17, 19, odd, 39, 43, 45, 61, 65) Barnett/Ziegler/Byleen Business Calculus 12e
19
Chapter 3 Limits and the Derivative
Section 2 Infinite Limits and Limits at Infinity (Part 2)
20
Objectives for Section 3.2 Infinite Limits and Limits at Infinity
The student will be able to solve applications involving limits. 2 ∞ & > Barnett/Ziegler/Byleen Business Calculus 12e
21
Application: Business
T & C surf company makes surfboards with fixed costs at $300 per day. One day, they made 20 boards and total costs were $5100. Assuming the total cost per day is linearly related to the number of boards made per day, write an equation for the cost function. Write the equation for the average cost function. Graph the average cost function: 𝑥: 1, 30 𝑦:[0, 500] What does the average cost per board approach as production increases? Barnett/Ziegler/Byleen Business Calculus 12e
22
Application: Business
T & C surf company makes surfboards with fixed costs at $300 per day. One day, they made 20 boards and total costs were $5100. Assuming the total cost per day is linearly related to the number of boards made per day, write an equation for the cost function. 𝑦=𝑚𝑥+𝑏 5100=𝑚(20)+300 𝑚=240 𝑇ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠: 𝐶 𝑥 =240𝑥+300 Barnett/Ziegler/Byleen Business Calculus 12e
23
Application: Business
T & C surf company makes surfboards with fixed costs at $300 per day. One day, they made 20 boards and total costs were $5100. Write the equation for the average cost function. 𝐶 𝑥 = 𝐶(𝑥) 𝑥 𝐶 𝑥 = 240𝑥+300 𝑥 Barnett/Ziegler/Byleen Business Calculus 12e
24
Application: Business
T & C surf company makes surfboards with fixed costs at $300 per day. One day, they made 20 boards and total costs were $5100. Graph the average cost function: 𝑥: 1, 30 𝑦:[0, 500] Number of surfboards Average cost per day Barnett/Ziegler/Byleen Business Calculus 12e
25
Application: Business
T & C surf company makes surfboards with fixed costs at $300 per day. One day, they made 20 boards and total costs were $5100. What does the average cost per board approach as production increases? Number of surfboards Average cost per day 𝐶 𝑥 = 240𝑥+300 𝑥 As the number of boards increases, the average cost approaches $240 per board. Barnett/Ziegler/Byleen Business Calculus 12e
26
Application: Medicine
A drug is administered to a patient through an IV drip. The drug concentration (mg per milliliter) in the patient’s bloodstream t hours after the drip was started is modeled by the equation: What is the drug concentration after 2 hours? Evaluate and interpret the meaning of the limit: 𝐶 𝑡 = 5𝑡 𝑡+50 𝑡 lim 𝑡→∞ 𝐶(𝑡) Barnett/Ziegler/Byleen Business Calculus 12e
27
Application: Medicine
A drug is administered to a patient through an IV drip. The drug concentration (mg per milliliter) in the patient’s bloodstream t hours after the drip was started is modeled by the equation: What is the drug concentration after 2 hours? 𝐶 𝑡 = 5𝑡 𝑡+50 𝑡 𝐶 2 = 5(2) ≈4.8 After 2 hours, the concentration of the drug is 4.8 mg/ml. Barnett/Ziegler/Byleen Business Calculus 12e
28
Application: Medicine
A drug is administered to a patient through an IV drip. The drug concentration (mg per milliliter) in the patient’s bloodstream t hours after the drip was started is modeled by the equation: Evaluate and interpret the meaning of the limit: 𝐶 𝑡 = 5𝑡 𝑡+50 𝑡 lim 𝑡→∞ 𝐶(𝑡) lim 𝑡→∞ 5𝑡 𝑡+50 𝑡 =0 As time passes, the drug concentration approaches 0 mg/ml. Barnett/Ziegler/Byleen Business Calculus 12e
29
Homework #3-2B: Pg 150 (2-8 even, 11, 13, 18, 34, 36, 37, 41, 49, 63, 67, 69, 73, 76) Barnett/Ziegler/Byleen Business Calculus 12e
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.